
Operating Systems
Lab 4

Linux Character Device Drivers

This lab takes a look at how device drivers are written and used. You will
need to read chapters 3, 4, 7 and 9 of the Linux Kernel Module
Programming Guide (called LKMPG) to get a better understanding of
device drivers and to write the lab report. We will start with a very simple
program and then build up to more sophisticated / complex device
drivers. These lab exercises do not manipulate any real hardware, but will
create pseudo character devices.

The first part of the lab uses code provided for you so that you can learn
by example from reading the source code. The last two exercises require
you to write a small amount of code. If you should not be successful at
completing the last two parts of the lab, turn in as much as you have with
documentation of what you were trying to do in the code and the nature
of the problem that stopped you from being successful.

Procedure:

1. Use the wget command to download the tar file from the study
guide.
Extract the file using the command tar xvf lab4.tar.

2. Type the make command to compile chardev.c, and chario.c to
loadable kernel module files.

3. The first module, chardev.c is discussed in chapter 4 of the LKMPG.
One of the key points to understand about device drivers is that
they present an abstraction of a file to the kernel. Notice the
file_operations data structure which is registered with the
kernel when the module is installed. The values in the data
structure are pointers to functions contained in the device driver.
Similar to the files in the /proc file system, which we studied in the
last two labs, we need a real file which provides a handle to invoke
the device driver and thus use the device. These special files are
created with the mknod command. Read the man page for mknod.
Answer questions 1 – 3.

4. Now install and use the chardev device driver. Normally, special
device files are kept in the /dev directory, but since we are not

installing this driver as a regular part of the system, we will keep
them under our home directory.

5. First, in another window, tail the system log file (tail –f
/var/log/messages).
sudo /sbin/insmod ./chardev.ko
Now use mknod to make the special file. Look at the system log file
for the command to use. Read the device driver file several times.
(cat hello) Try to write to the device. First you will need to
change the permissions of the special file to allow it to be written
to. Observe the output from the system log file.

sudo chmod go+w ~/labs/hello
echo “hi” > hello
sudo /sbin/rmmod chardev

See question 4.

6. Next, we will look at chario.c, which is described in chapter 7 of the
LKMPG. As before, install the module; make the special device file;
write to the device and read from it. Don’t remove the module just
yet. See questions 5, 6, 7.
sudo /sbin/insmod ./chario.ko
See the log file for the options to the mknod command.
sudo chmod go+w ~/labs/char_dev
echo “hi” > char_dev
cat char_dev

7. For devices which accept input and output, we need a special way
to communicate with the device for control operations. We don’t
want the device to think that our control instructions are data
being passed to the device. This is what the ioctl() system
call is for. Some examples of how ioctl() is used are to eject a
cdrom or set the baud rate of a modem. The ioctl.c file contains
source code to be run as a user level process. Compile and run
ioctl.c and observe the output on console and in system log file.
gcc ioctl.c
./a.out
Now remove the chario module.
sudo /sbin/rmmod chario

8. The drivers looked at so far use the same simple mechanism to
protect against two processes opening the device at the same time.
They just return if the device is already open. A better approach is
to have the second process block waiting for the device. (Recall the
states that a process can be in.) Chapter 9 of the LKMPG discusses

how to block a process. Make a copy of the chario.c driver and
modify the device_open() and device_release() functions
according to the example in Chapter 9 of the LKMPG. In your lab
report, be sure to show the code you wrote. Install your modified
kernel module; make a character special device file; experiment
with writing data to and reading data from the device. To see a
process block and then be woken up, you may need to create a race
condition. What I did was to write a user program that reads a file
(like cat), but has a sleep statement to stall closing the file.
(slow_read.c available on K-State Online) Note that you will also
need to modify the Makefile to compile it. In your lab report, be
sure to show the code you wrote.
gcc slow_read.c
cat Makefile > fifo
for i in 1
do
./a.out fifo &
cat Makefile > fifo &
done

9. The chario driver can be written to and read from, but it is not a
true fifo (first in, first out) queue like a pipe is. Each read
operation from a fifo queue should read new data if new data is
available. The write operations should append data to the end of
the current data in the queue. Make a copy of chario.c file, call it
fifo2.c if you like. Modify the new driver to function as a true fifo
queue. Hint: You will probably want to use an array to create a
circular buffer. You will want to keep global pointers to where in
the data the write operation last put data into the queue and where
in the data the read operation last read from the queue.

10. Now remove any remaining modules you installed and delete the
special device files which you created.

Questions:

1. What is the meaning of the parameters passed to mknod?

2. Study the source code of chardev.c and explain what the device
does.

3. What is the purpose of the try_module_get() and put_module()
macros? (You will need to do some reading to answer this.)

4. Why do we get the major number to use from the system log file?
(Look at the source code to answer this.)

5. Study the source code of chario.c and describe what it does when
written to and read from.

6. What do the put_user() and get_user() macros accomplish?
Again, you may have to do a little reading to explain this.

7. Describe the mechanism used in chario.c to make sure only one
process has the device open at any one time.

8. Study the source code for ioctl.c and the code in chario.c
related to ioctl. How could the ideas in this code be used with real
hardware?

