15. Bibliography¶
[ADAIR90] | Adair, Robert K. The Physics of Baseball. HarperPerennial, 1990. |
[ALSAQRE19] | Alsaqre, Falah. Two-Dimensional PCA for Face Recognition (https://www.mathworks.com/matlabcentral/fileexchange/69377-two-dimensional-pca-for-face-recognition), MATLAB Central File Exchange. Retrieved July 10, 2019. |
[ASTROM12] | Astrom, Karl J. and Murray, Richard M. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2012. |
[BRUNTON19] | Brunton, Steven and Kutz, Nathan. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019. |
[BUFFINGTON14] | Buffington, Garrett. Polar Decomposition of a Matrix. University of Puget Sound, 2014. http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-buffington-polar-decomposition.pdf |
[BUTT10] | Butt, Rizwan. Introduction to Numerical Analysis using MATLAB. Jones and Bartlett, 2010. |
[CHAMBERLAIN16] | Chamberlain, Andrew. The linear algebra view of the Fibonacci sequence. https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-the-fibonacci-sequence-4e81f78935a3, 2016. |
[CHAPRA15] | Chapra, Steven C. and Canale, Raymond L. Numerical Methods for Engineers, Seventh Edition. McGraw-Hill, 2015. |
[CHEN12] | Chen, Mei-Qin. A Brief History of Linear Algebra and Matrix Theory. The Citadel, 2012. http://www.macs.citadel.edu/chenm/240.dir/12fal.dir/history2.pdf |
[CIARLET94] | P.G. Ciarlet and R.S. Varga. In Memoriam: Alston Scott Householder, 1904-1993. Numerische Mathematik, 68(2):187, 1994. |
[CLINE76] | Cline, R.E. and Plemmons, R.J. l_2–Solutions to Undetermined Linear Systems. SIAM Review, Vol. 18, No. 1 (Jan., 1976), pp. 92-106. https://www.jstor.org/stable/2029001. |
[CORKE17] | Corke, Peter. Robotics, Vision and Control – Fundamental Algorithms in MATLAB. Second Edition. Springer, 2017. |
[CVX20] | CVX Research, Inc., CVX: Matlab Software for Disciplined Convex Programming. 2020. http://cvxr.com/cvx/ |
[DEISENROTH20] | Deisenroth, Marc Peter, et al. Mathematics for Machine Learning. Cambridge University Press, 2020. |
[DEMMEL97] | Demmel, James W. Applied Numerical Linear Algebra. SIAM, 1997. |
[DEMMEL90] | Demmel, James W. and Kahan, William. Accurate singular values of bidiagonal matrices. SIAM Journal on Scientific and Statistical Computing, 11(5):873–912, 1990. |
[DOPICO13] | Dopico, F. M. Alan Turing and the origins of modern Gaussian elimination. Arbor, 189 (764): a084, 2013. doi: http://dx.doi.org/10.3989/arbor.2013.764n6007 |
[DOWNEY11] | Downey, Allen. Physical Modeling in MATLAB, second edition. Green Tea Press, 2011. https://greenteapress.com/wp/physical-modeling-in-matlab/ |
[DUBRULLE00] | A. A. Dubrulle. Householder Transformations Revisited. SIAM Journal on Matrix Analysis and Applications, 22(1):33–40, 2000. |
[ECKART36] | Eckart, C. and Young, G. The approximation of one matrix by another of lower rank, Psychometrika, vol. 1, No. 3, 1936, pp. 211-218. doi:10.1007/BF02288367. |
[FORSYTHE76] | Forsythe, G. E., M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical Computations. Englewood Cliffs, NJ: Prentice Hall, 1976. |
[FRANCIS61] | John G.F. Francis. The qr transformation a unitary analogue to the lr transformation – part 1. The Computer Journal, 4(3):265–271, 1961. |
[FRANCIS62] | John G.F. Francis. The QR transformation – part 2. The Computer Journal, 4(4):332–345, 1962. |
[FUNDAMENTALS] | MathWorks, MATLAB Fundamentals, MATLAB Academy, 2017. https://matlabacademy.mathworks.com/ |
[GAVISH14] | Gavish, M. and Donoho, D. L. The Optimal Hard Threshold for Singular Values is 4/sqrt(3), IEEE Transactions on Information Theory, vol. 60, no. 8, pp. 5040-5053, Aug. 2014, doi: 10.1109/TIT.2014.2323359. |
[GIVENS54] | Wallace Givens. Numerical computation of the characteristic values of a real symmetric matrix. Technical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN, 1954. |
[GIVENS57] | Wallace Givens. The characteristic value-vector problem. Journal of the ACM (JACM), 4(3):298–307, 1957. |
[GIVENS58] | Wallace Givens. Computation of Plane Unitary Rotations Transforming a General Matrix to Triangular Form. Journal of the Society for Industrial and Applied Mathematics, 6(1):26–50, 1958. |
[GOLUB65] | Golub, Gene H. and Kahan, William. Calculating the singular value decomposition and pseudo-inverse of a matrix. SIAM, 2(2):205–224, 1965. |
[GOLUB70] | Golub, G.H., Reinsch, C. Singular value decomposition and least squares solutions, Numer. Math. 14, 403–420, 1970. https://doi-org.er.lib.k-state.edu/10.1007/BF02163027 |
[GOLUB09] | Golub, Gene H. and Uhlig, Frank. The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and subsequent developments. IMA Journal of Numerical Analysis, 29(3):467–485, 2009. |
[GOLUB13] | Golub, Gene H. and Van Loan, Charles F. Matrix Computations, 4th ed. Baltimore, MD: Johns Hopkins University Press, 2013, |
[GUTKNECHT10] | Martin H. Gutknecht and Beresford N. Parlett. From qd to LR, or, how were the qd and LR algorithms discovered? IMA Journal of Numerical Analysis, 31(3):741–754, 05 2010. |
[GUTTAG16] | Guttag, John V. Introduction to Computation and Programming Using Python: With Application to Understanding Data, Second Edition. The MIT Press, 2016. |
[HESSENBERG40] | Karl Hessenberg. Behandlung linearer eigenwertaufgaben mit hilfe der Hamilton-Cayleyschen gleichung. IPM, 1940. |
[HIGHAM11] | Higham, Nicholas J. Gaussian elimination, Wiley Interdisciplinary Reviews: Computational Statistics, 3, pp. 230-238, 2011. |
[HIGHAM17] | Higham, Desmond J. and Higham, Nicholas J. MATLAB Guide, Third edition. SIAM, 2017. |
[HIGHAM02] | Higham, Nicholas J. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. |
[HOGG78] | Hogg, Robert V., and Craig, Allen T. Introduction to Mathematical Statistics, Fourth Edition. Macmillan, 1978. |
[HORST37] | Paul Horst. A method of factor analysis by means of which all coordinates of the factor matrix are given simultaneously. Psychometrika, 2(4):225–236, 1937. |
[HOUSEHOLDER53] | Alston S. Householder. Principles of Numerical Analysis. McGraw-Hill, New York, 1953. |
[HOUSEHOLDER58] | Alston S. Householder. Unitary Triangularization of a Nonsymmetric Matrix. Journal of the ACM, 5(4):339–342, 1958. |
[HOUSEHOLDER64] | Alston S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell Publishing Company, New York, 1964. |
[HOUSEHOLDER70] | Alston S. Householder. The numerical treatment of a single nonlinear equation. McGraw-Hill, New York, 1970. |
[NtlArchive] | Founders Online, National Archives. From George Washington to John Parke Curtis, 3 August 1778. https://founders.archives.gov/documents/Washington/03-16-02-0249 |
[IEEE85] | IEEE Standard for Binary Floating-Point Arithmetic, in ANSI/IEEE Std 754-1985, 12 Oct. 1985, pp.1-20. doi: 10.1109/IEEESTD.1985.82928. |
[KAUTSKY85] | Kautsky, J., N.K. Nichols, and P. Van Dooren. Robust Pole Assignment in Linear State Feedback, International Journal of Control, 41, 1985, pp. 1129-1155. |
[KLEIN13] | Klein, Philip N. Coding the Matrix: Linear Algebra through Applications to Computer Science. Newtonian Press, 2013. |
[KUTZ13] | Kutz, Jose Nathan. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data. Oxford University Press, 2013. |
[LAMBERS10] | Lambers, James. CME 335 Lecture 6 Notes, Stanford University, 2010. https://web.stanford.edu/class/cme335/lecture6.pdf |
[LUENGO15] | Luengo, Cris. Boxplot, 2015. MATLAB Central File Exchange. Retrieved September 3, 2020. https://www.mathworks.com/matlabcentral/fileexchange/51134-boxplot |
[MARTIN12] | Carla D Martin and Mason A Porter. The extraordinary SVD. The American mathematical monthly, 119(10):838–851, 2012. |
[MATHEWS05] | Mathews, John H, and Kurtis D Fink. Numerical Methods Using Matlab. 4th ed., Pearson Prenticse Hall, 2005. |
[MERIAM78] | Meriam, J.L. Engineering Mechanics Statics and Dynamics. John Wiley & Sons, 1978. |
[MERTZ70] | Richard R. Mertz. Alston Scott Householder interview: July 20, 1970. In Computer Oral History Collection, page 47–es, USA, 1999. Smithsonian Institution Press. |
[MOLER04] | Moler, Cleve. Numerical Computing with MATLAB. SIAM, 2004. |
[MOLER06] | Moler, Cleve. Professor SVD. A blog post in the MathWorks’ Technical Articles and Newsletters, 2006. https://www.mathworks.com/company/newsletters/articles/professor-svd.html |
[MOLER20] | Moler, Cleve. Gil Strang and the CR Matrix Factorization, A blog post from Cleve’s Corner, 2020. https://blogs.mathworks.com/cleve/2020/10/23/gil-strang-and-the-cr-matrix-factorization/ |
[MOORE18] | Moore, David S. and Notz, William and Fligner, Michael. The Basic Practice of Statistics, W.H. Freeman and Co., New York, 2018. |
[MUNTZ13] | C.H. M”{u}ntz. Solution directe de l’’{e}quation s’{e}culaire et de quelques probl`{e}mes analogues transcendanls. Comptes Rendus Hebdomadaires des S’{e}ance de l’Acad’{e}mie des Sciences, 156:43–46, 1913. |
[OCONNOR98] | J.J. O’Connor and E.F. Robertson. MacTutor biography of Issai Schur. https://mathshistory.st-andrews.ac.uk/Biographies/Schur/, October 1998. |
[OCONNOR99] | J.J. O’Connor and E.F. Robertson. MacTutor biography of Alston Scott Householder. https://mathshistory.st-andrews.ac.uk/Biographies/Householder/, October 1999. |
[ORNL54] | WC Sangren. Mathematics panel semiannual progress report for period ending December 31, 1954. Technical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN, 1954. |
[ORNL56] | AS Householder. Mathematics panel semiannual progress report for period ending June 30, 1956. Technical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN, 1956. |
[PERRON07] | Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–263, 1907. |
[POULARIKAS94] | Poularikas, Alexander D. and Seely, Samuel. Signals and Systems, Second Edition, Krieger Publishing Company, 1994. |
[SCHUR09] | Issai Schur. ¨Uber die charakteristischen wurzeln einer linearen substitution mit einer anwendung auf die theorie der integralgleichungen. Mathematische Annalen, 66(4):488–510, 1909. |
[SHAMPINE97] | Shampine, Lawrence F. and Reichelt, Mark W. The MATLAB ODE Suite, SIAM Sci. Comput., 18(1):1-22, 1997. |
[SHEN15] | Shen, Wen. An Introduction to Numerical Computation, World Scientific Publishing Company, 2015. |
[SIAUW15] | Siauw, Timmy, and Alexandre M. Bayen. An Introduction to MATLAB Programming and Numerical Methods: For Engineers. Academic Press, 2015. |
[STRANG99] | Strang, Gilbert. Linear Algebra MIT Course. MIT Open Courseware, 1999. https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/ |
[STRANG07] | Strang, Gilbert. Computational Science and Engineering. Wellesly-Cambridge Press, 2007. |
[STRANG14] | Strang, Gilbert. Differential Equations and Linear Algebra. Wellesly-Cambridge Press, 2014. |
[STRANG16] | Strang, Gilbert. Introduction to Linear Algebra, 5th Edition. Wellesly-Cambridge Press, 2016. |
[STRANG20] | Strang, Gilbert. RES.18-010 A 2020 Vision of Linear Algebra. Massachusetts Institute of Technology: MIT OpenCourseWare, 2020. https://ocw.mit.edu. |
[STEWART73] | Gilbert W Stewart. Introduction to matrix computations. Elsevier, 1973. |
[STEWART79] | Gilbert W. Stewart. A.S. Householder. Linear Algebra and its Applications, 28:1–3, 1979 |
[STEWART93] | Stewart, G. W. On the Early History of the Singular Value Decomposition. SIAM Review 35, no. 4, 1993, pp 551–66. http://www.jstor.org/stable/2132388. |
[SYSEQDOC] | The MathWorks Inc. Systems of Linear Equations. https://www.mathworks.com/help/matlab/math/systems-of-linear-equations.html |
[THARWAT16] | Tharwat, Alaa. PCA (Principal Component Analysis). (https://www.mathworks.com/matlabcentral/fileexchange/30792-pca-principal-component-analysis), MATLAB Central File Exchange. Retrieved July 12, 2019. |
[TUCKER93] | Tucker, Alan. The Growing Importance of Linear Algebra in Undergraduate Mathematics. The College Mathematics Journal, Vol. 24, No. 1, Jan., 1993, pp. 3-9. |
[TURING48] | Turing, A. M. Rounding-off Errors in Matrix Processes. The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 1, No. 1, 1948, pp. 287-308, https://doi.org/10.1093/qjmam/1.1.287. |
[TURNBULL32] | Herbert Westren Turnbull and Alexander Craig Aitken. An introduction to the theory of canonical matrices. Blackie & son limited, London, 1932. Reprints in 1945 and 1948. |
[WATKINS10] | Watkins, David S. Fundamentals of Matrix Computations. John Wiley & Sons, third edition, 2010. |
[WATKINS11] | David S. Watkins. Francis’s algorithm. The American mathematical monthly, 118(5):387–403, 2011 |
[WILLIAMS14] | Williams, Gareth. Linear Algebra with Applications, Eighth Edition. Jones & Bartlett Learning, 2014. |
[WILKINSON59] | James H. Wilkinson. Stability of the reduction of a matrix to almost triangular and triangular forms by elementary similarity transformations. J. Assoc. Comput. Mach., 6:336–359, 1959. |
[WILKINSON65] | James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford University, 1965. |
[YANG05] | Yang, Won Young, et al. Applied Numerical Methods Using MATLAB. John Wiley & Sons, 2005. doi: 10.1002/0471705195 |
[YETURU20] | Yeturu, Kalidas. Chapter 3 - Machine learning algorithms, applications, and practices in data science. Handbook of Statistics. Elsevier, Volume 43, 2020, pp. 81-206, https://doi.org/10.1016/bs.host.2020.01.002. |