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6.2 Working with Matrices

We have already defined both vectors and matrices and discussed how to create them in the Vectors
and Matrices in MATLAB section.

6.2.1 Special Matrices

Zero Matrix

A zero vector or matrix of any size with all zero elements is denoted as 0.

Diagonal Matrix

A diagonal matrix has zeros everywhere except on the main diagonal, which is the set of
elements where row index and column index are the same. Diagonal matrices are usually
square (same number of rows and columns), but they may be rectangular.

�

⇥
d1 0 0
0 d2 0
0 0 d3

⇤

⌅

The main diagonal, also called the forward diagonal, or the major diagonal, is the set of
diagonal matrix elements from upper left to lower right. The set of diagonal elements from
lower left to upper right is of significantly less interest to us, but has several names including
the antidiagonal , back diagonal, secondary diagonal, or the minor diagonal.

Identity Matrix

An identity matrix (I) is a square, diagonal matrix where all of the elements on the main
diagonal are one. Identity matrices are like a one in scalar math. That is, the product of any
matrix with the identity matrix yields itself.

AI = A = I A

I2x2 =

⇧
1 0
0 1

⌃

I3x3 =

�

⇥
1 0 0
0 1 0
0 0 1

⇤

⌅

I4x4 =

�

⌥⌥⇥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⇤

��⌅

MATLAB has a function called eye that takes one argument for the matrix size and returns
an identity matrix.
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>> I2 = eye(2)
I2 =

1 0
0 1

>> I3 = eye(3)
I3 =

1 0 0
0 1 0
0 0 1

Upper Triangular Matrix

Upper triangular matrices have all zero values below the main diagonal. Any non-zero
elements are on or above the main diagonal.

U =

�

⇥
a b c
0 d e
0 0 f

⇤

⌅

Lower Triangular Matrix

Lower triangular matrices have all zero values above the main diagonal. Any non-zero
elements are on or below the main diagonal.

L =

�

⇥
a 0 0
b c 0
d e f

⇤

⌅

Symmetric Matrix

A symmetric matrix (S) has symmetry relative to the main diagonal. If the matrix where
written on a piece of paper and you folded the paper along the forward diagonal then the off-
diagonal elements with the same value would lie on top of each other. Thus for symmetric
matrices ST = S. Here are a couple example symmetric matrices.

⇧
1 2
2 3

⌃ �

⇥
2 3 6
3 1 5
6 5 2

⇤

⌅

Orthonormal Matrix

A matrix is called orthonormal if the columns are unit vectors (length of 1) and the dot
product between the columns is zero (cos(⌥) = 0). That is to say, the columns are all
orthogonal to each other.

Orthogonal Matrix

A matrix is orthogonal (Q) if it is both orthonormal and square.

6.2.2 Special Matrix Relationships
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Matrix Inverse

The inverse of a square matrix, A, is another matrix, A�1, that multiplies with the original matrix
to yield the identity matrix.

A�1A = AA�1 = I

Not all square matrices have an inverse and calculating the inverse, especially for larger matrices
is a nontrivial, which will be discussed later.

In MATLAB, the function inv(A) returns inverse of matrix A .

Here are a couple simple properties for matrix inverses.

• (AB)�1 = B�1A�1 This is a simple proof that is discussed in one of the attendance quizzes.
Hint: Start with (AB)�1(AB) = I .

•
 
AT

⌦�1
= (A�1)T .

Start with the simple observation that IT = I and (AB)T = BTAT (see Matrix Transpose
Properties).

(A�1A)T = IT = I

AT (A�1)T = I 
AT

⌦�1
AT (A�1)T =

 
AT

⌦�1

(A�1)T =
 
AT

⌦�1

Matrix Transpose Properties

We described the transpose for vector and matrices in Transpose.

The Wikipedia page for transpose lists many transpose properties.

•
 
AT

⌦T
= A

• The transpose with respect to addition, (A+B)T = AT +BT .

• (AB)T = BT AT . Notice that the order is reversed.

(i, j) value of (AB)T = (j, i) value of (AB)
= j row of A◊ i column of B
= i row of BT ◊ j column of AT

= (i, j) value of (BT AT )

• We often pre-multiply vectors and matrices by their transpose (ATA). The result is a scalar
for a column vector, and a square, symmetric matrix for a row vector, rectangular matrix, and
square matrix. The operation of ATA turns out to be a very useful operation for rectangular
matrices. For a m-by-n matrix, the resulting matrix size is n-by-n (square).
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If S = ATA is symmetric, then ST = S.

ST =
 
ATA

⌦T
= AT

 
AT

⌦T
= ATA = S

Another interesting result is that the trace of S = ATA, denoted as Tr(S), is the sum of the
squares of all the elements of A. The trace of a matrix is the sum of its diagonal elements.

AT A =

⇧
a b c
d e f

⌃�

⇥
a d
b e
c f

⇤

⌅ =

⇧
a2 + b2 + c2 ad+ be+ cf
ad+ be+ cf d2 + e2 + f 2

⌃

• For an orthogonal matrix, Q�1 = QT . This is called the Spectral Theorem. Note that the
columns of the matrix must be unit vectors for this property to be true.

Since each of the columns are unit vectors, it follows that the diagonal of QTQ is ones. The
off-diagonal values are zeros because the dot product between the columns is zero. Thus,

QTQ = QQT = I

QT = Q�1

Here is an example using an orthogonal matrix, which is a rotation matrix. Rotation matrices
are often used in engineering.

>> Q
Q =

0.5000 -0.8660
0.8660 0.5000

>> Q'
ans =

0.5000 0.8660
-0.8660 0.5000

>> Q(:,1)'*Q(:,2) % dot product of columns => orthogonal
ans =

0

>> Q'*Q % orthogonal columns
ans =

1.0000 -0.0000
-0.0000 1.0000

>> Q*Q' % orthogonal rows
ans =

1.0000 0.0000
0.0000 1.0000
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Another interesting result about orthogonal matrices is that the product of two orthogonal
matrices is also orthogonal. This comes about because both the inverse and transpose of
matrices reverse the matrix order. Proof of orthogonality only requires that QT = Q�1.

Consider two orthogonal matrices Q1 and Q2.

(Q1Q2)
�1 = Q�1

2 Q�1
1 = QT

2Q
T
1 = (Q1Q2)

T

6.2.3 Matrix Math

Addition and Subtraction

Addition and subtraction of matrices is performed element-wise.
⇧
a b
c d

⌃
�

⇧
e f
g h

⌃
=

⇧
a� e b� f
c� g d� h

⌃

Scalar and element-wise operations between matrices work the same as with vectors. (See
Element-wise Arithmetic)

Matrix Multiplication

Matrix multiplication requires that the inner dimensions of the two matrices agree. A m-by-n
matrix may be multiplied by a n-by-p matrix to yield a m-by-p matrix. The number of columns in
the first matrix, n, must equal the number of rows in the second matrix, n.

Multiplication of a matrix by a vector is defined as either the linear combination of the columns of
the matrix with the vector elements, or as the sum of products between the rows of left matrix and
the columns of right matrix or vector.

Ax =

�

⇥
1 2 3
2 5 2
6 �3 1

⇤

⌅

�

⇥
2
1
1

⇤

⌅

= 2

�

⇥
1
2
6

⇤

⌅+ 1

�

⇥
2
5
�3

⇤

⌅+ 1

�

⇥
3
2
1

⇤

⌅

=

�

⌥⌥⌥⌥⇥

↵
1 2 3

�
·
↵
2 1 1

�

↵
2 5 2

�
·
↵
2 1 1

�

↵
6 �3 1

�
·
↵
2 1 1

�

⇤

����⌅

=

�

⇥
7
11
10

⇤

⌅
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Each element of a matrix multiplication between two matrices comes from the sum of products
between a row of the first matrix by a column of the second matrix.

The product C of matrices A (M rows and K columns) and B (K rows and N columns) is a matrix
of M rows and N columns.

C = AB

The individual values of Ci,j are calculated as:

Ci,j =
K�

n=1

Ai,n Bn,j

For 2-by-2 matrices:
⇧
a b
c d

⌃ ⇧
e f
g h

⌃
=

⇧
(a e + b g) (a f + b h)
(c e + d g) (c f + d h)

⌃

⇧
1 2
3 4

⌃ ⇧
5 6
7 8

⌃
=

⇧
(1 · 5 + 2 · 7) (1 · 6 + 2 · 8)
(3 · 5 + 4 · 7) (3 · 6 + 4 · 8)

⌃
=

⇧
19 22
43 50

⌃

Table 6.1: Size of Matrix Multiplications
First Matrix Second Matrix Output Matrix

1-by-n row vector n-by-1 column vector 1-by-1 scalar
1-by-p row vector p-by-n matrix 1-by-n row vector
n-by-1 column vector 1-by-m row vector n-by-m matrix
n-by-p matrix p-by-1 column vector n-by-1 column vector

Matrix Multiplication Properties

1. Matrix multiplication is associative: (AB)C = A (BC).

2. Matrix multiplication is, in general, NOT commutative even for square matrices: (AB ⇥=
BA). The exceptions to this are multiplication by the identity matrix and inverse matrix.

3. AB = AC does not necessarily imply that B = C. For example, consider matrices:

A =

⇧
1 2
2 4

⌃
,B =

⇧
2 1
1 3

⌃
,C =

⇧
4 3
0 2

⌃

The Outer Product View of Matrix Multiplication

We normally think of matrix multiplication as finding each term of the matrix product from the
sum of products between the rows of the first matrix and the columns of the second matrix. This
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is the inner product or dot product view. But there is also an outer product view that is columns
times rows.

AB =

�

⇥a1 a2 · · · an

⇤

⌅

�

⌥⌥⌥⇥

b1
b2
...
bn

⇤

���⌅
= a1 b1 + · · ·+ an bn

Each column ak of an m-by-p matrix multiplies the kth row of bk of an p-by-n matrix. The
product akbk is an m-by-n matrix of rank one formed from the Outer Product of the two vectors.
The final product AB is the sum of the rank-one matrices.

The outer product matrix multiplication is not, in practice, how to multiply two matrices. Rather,
it gives an alternative perspective of what matrix multiplication accomplishes. This perspective
will be useful later when we learn about various ways to factor a matrix into a product of sub-
matrices, particularly with the Singular Value Decomposition (SVD).

Now complete A Change of Coordinate Frames homework assignment.

Matrix Division

Matrix division, in the sense of scalar division, is not defined for matrices. Multiplication by the in-
verse of a matrix accomplishes the same objective as division does in scalar arithmetic. MATLAB
also has two alternative operators to the matrix inverse that act as one might expect from division
operators, left–divide (\ ) and right–divide (/ ); however, they are much more complicated than
simple division. They are used to solve Systems of Linear Equations.

Table 6.2: MATLAB’s Matrix Divison Operators
Operator Need Usage Replaces Common Name

\ A*x = b x = A \ b x = inv(A)*b A under b
/ x*A = b x = b / A x = b*inv(A) b over A

6.2.4 Determinant

The determinant of a square matrix is a number. At one time, a significant portion of linear algebra
centered around determinants, but that is not so much the case today [STRANG99]. Thus, while
it is important to know what a determinant is, we will avoid using them when possible. I’m not
aware of any algorithms internal to MATLAB that compute determinants of matrices.

• The complexity of computing a determinant by the normal method has run-time complexity
on the order of n! (n – factorial), which is fine for small matrices, but is too slow for large
matrices. Although, there is a Determinant Shortcut using LU Decomposition that improves
it to O(n3).
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• With the use of computers and applications such as machine learning that use linear algebra
significantly, very large matrices are often used, so computing determinants is less useful
because it is possible to use alternative algorithms that do not require determinants. New
algorithms for applications that previously used determinants have been found that do not
require determinants. This is the case for:

– determining if a matrix is invertible.

– computing eigenvalues

• One application of the determinant is to compute the volume of a parallelepiped. A paral-
lelepiped is a generalization of a cube, it is a three-dimensional figure formed by six paral-
lelograms. The absolute value of the determinant of real vectors is equal to the volume of
the parallelepiped spanned by those vectors.

Either of two notations are used to indicate the determinant of a matrix – det(A) or |A|.

The standard technique for computing a determinant is called the Laplace expansion.

The determinant of a 2-by-2 matrix is simple, but it gets more complicated as the matrix dimension
increases.

����
a b
c d

���� = a d� c b

The 3-by-3 determinant makes use of 3 2-by-2 determinants, called cofactors. Each element in a
row or columns is multiplied by a determinant from the other rows and columns excluding the row
and column of the multiplication element.

������

a b c
d e f
g h i

������
= a

����
e f
h i

����� b

����
d f
g i

����+ c

����
d e
g h

����

Another approach to remembering the sum of products need to compute a 3x3 determinant is to
compute diagonal product terms. The terms going from left to right are added while the right to
left terms are subtracted. Note: This only works for 3x3 determinants.

������

a b c
d e f
g h i

������
= aei+ bfg + cdh� ceg � afh� bdi

For a 4-by-4 determinant, the pattern continues with each cofactor term now being a 3-by-3 de-
terminant. The pattern likewise continues for higher order matrices. The number of computations
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needed with this method of computing a determinant is on the order of n!, which is prohibitive for
large matrices.

Notice that the sign of the cofactor additions alternate according to the pattern:

signi,j = (�1)i+j =

�

⌥⌥⇥

+ � + �
� + � +
+ � + �
� + � +

⇤

��⌅

It is not necessary to always use the top row for Laplace expansion. Any row or column will work,
just make note of the signs of the cofactors. The best strategy is to expand along the row or column
with the most zeros.

Here is bigger problem with lots of zeros so it is not too bad, so try using Laplace expansion to
find the determinant.

����������

8 5 4 3 0
7 0 6 1 0
8 �5 4 3 �5
�3 0 0 0 0
4 0 2 2 0

����������

MATLAB has a function called det that takes a square matrix as input and returns the determi-
nant.
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6.2.5 Calculating a Matrix Inverse

The inverse of a square matrix, A, is another matrix, A�1 that multiplies with the original matrix
to yield the identity matrix.

A�1A = AA�1 = I

Unfortunately, calculating the inverse of a matrix is not a trivial problem. A formula known as
Cramer’s Rule provides a neat and tidy equation for the inverse, but for matrices beyond a 2-by-2,
it is computationally very slow. Cramer’s Rule requires the calculation of the determinant and the
full set of covariances for the matrix. The run time complexity of Cramer’s rule is O(n · n!), which
means that for a n-by-n matrix, calculating an inverse using Cramer’s rule requires about n · n!
computations. The covariances of a 2-by-2 matrix are simple, which is not true for larger matrices.

For a 2-by-2 matrix, Cramer’s rule can be found by algebraic substitution.

AA�1 = I⇧
a b
c d

⌃ ⇧
x1 x2

y1 y2

⌃
=

⇧
1 0
0 1

⌃

One can perform the above matrix multiplication and find four simple equations from which the
terms of the matrix inverse may be derived.

A =

⇧
a b
c d

⌃
has inverse A�1 =

⇧
d �b
�c a

⌃

det(A)
=

1

(a d� c d)

⇧
d �b
�c a

⌃

Because of the computational complexity, Cramer’s Rule is not used by MATLAB or similar soft-
ware. Another technique known as Elimination is used. Implementing the elimination technique
in software is more complex, but the result is much faster calculations. The run time complexity of
calculating a matrix inverse by elimination is O(n3). The good news is that MATLAB already has
a matrix inverse function called inv .

>> A = [2 -3 0;4 -5 1;2 -1 -3];
>> A_inv = inv(A)
A_inv =

-1.6000 0.9000 0.3000
-1.4000 0.6000 0.2000
-0.6000 0.4000 -0.2000

Note: MATLAB’s left-divide operator uses the Elimination technique to solve a system of equa-
tions after only computing approximately half of the inverse of the matrix. Thus, it is not usually
necessary to compute the full inverse of the matrix.
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6.2.6 Invertible Test

Not all matrices can be inverted. A matrix that is not invertible is said to be singular. A matrix
is singular if some of its rows or columns are dependent on each other. An invertible matrix must
derive from the same number of independent equations as the number of unknown variables. A
square matrix from independent equations has rank equal to the dimension of the matrix, which
means it is full rank, has a non-zero determinant, and is invertible. We will define rank more
completely after discussing Elimination. For now, just think of rank as the number of independent
equations represented by a matrix.

The following matrix is singular because column 3 is just column 1 multiplied by 2.
�

⇥
1 0 2
2 1 4
1 2 2

⇤

⌅

Sometimes it is difficult to observe that the rows or columns are not independent. When a matrix
is singular, its rank is less than the dimension of the matrix, and its Determinant also evaluates to
zero.

>> A = [1 0 2;2 1 4;1 2 2];
>> rank(A)
ans =

2
>> det(A)
ans =

0
>> det(A') % the transpose is also singular
ans =

0

If you work much with MATLAB, you will occasionally run across an error or warning message
saying that a matrix is close to singular. The message may also reference a condition or rcondition
number. The condition number is another test for invertibility, which we will describe when we
get to Singular Value Decomposition (SVD).

We will mostly use rank as our invertible test.

6.2.7 Cross Product

The cross product is a special operation using two vectors in R3 with application to geometry
and physical systems. Although it is an operation for vectors, it is included here because matrix
operations (determinant or multiplication) is used to compute it.

The cross product of two non-parallel 3-D vectors is a vector perpendicular to both vectors and
the plane which they span. Finding the perpendicular to a plane is used to write the equation of a
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plane. The Projections Onto a Hyperplane has an example of using a cross product in the equation
of a plane. The direction of the cross product vector is determined by the right hand rule.

Fig. 6.2: Right Hand Rule: u◊ v points along your right thumb when the fingers curl from u to
v.

• u◊ v is spoken as “u cross v”.

• u◊ v is perpendicular to both u and v.

• v ◊ u is �(u◊ v).

• The length ⇤v ◊ u⇤ = ⇤u⇤ ⇤v⇤ | sin ⌥|, where ⌥ is the angle between u and v.

• The MATLAB function cross(u,v) returns u◊ v.

Cross Product by Determinant

The cross product of u = (u1, u2, u3) and v = (v1, v2, v3) is a vector.

u◊ v =

������

�i �j �k
u1 u2 u3

v1 v2 v3

������

=�i(u2v3 � u3v2)��j(u1v3 � u3v1) + �k(u1v2 � u2v1)

Vectors�i, �j, and �k are the unit vectors in the directions of x, y, and z of the 3-D axis.

Cross Product by Skew-Symmetric Multiplication

An alternative way to compute u ◊ v is by multiplication of a skew-symmetric, or anti-
symmetric matrix.

•The skew-symmetric matrix of u is given the math symbol, [u]◊. Such a matrix has
a zero diagonal and is always singular. The transpose of a skew-symmetric matrix is
equal to its negative.

[u]T◊ = �[u]◊
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•MATLAB function skew(u) returns [u]◊.

•For vectors in R3:

[u]◊ =

�

⇥
0 �u3 u2

u3 0 �u1

�u2 u1 0

⇤

⌅

u◊ v = [u]◊ v

>> u = [1 2 3]';
>> v = [1 0 1]';
>> cross(u,v)
ans =

2
2

-2
>> s = skew(u)
s =

0 -3 2
3 0 -1

-2 1 0
>> s*v
ans =

2
2

-2
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