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6.10.3 Finding Eigenvectors and Eigenvalues

We will begin with the equation for eigenvectors and eigenvalues and insert an identity matrix so
that we have a matrix multiplied by a vector on both sides of the equality.

Ax = �x

Ax = � I x

Then we rearrange the equation to find what is called the characteristic eigenvalue equation.

Ax� �I x = 0

(A� �I)x = 0

The case where x = 0 is a trivial solution that is not of general interest to us. Eigenvectors are
defined to be nonzero vectors. Thus, the only solution exists when the columns of matrix A� � I
form a linear combination with x yielding zero. This linear dependence of the columns of the
characteristic equation means that it is singular – having a zero determinant.

Finding Eigenvalues

Note: We will use the determinant here on small matrices because it keeps things simple. But
as noted in Determinant, calculating determinants is computationally slow. So it is not used for
large matrices. See Eigenvalue Computation in MATLAB for more about other ways to find the
eigenvalues of a matrix.

The n scalar eigenvalues, {�1,�2, . . . ,�n}, can be viewed as the shift of the matrix’s main diagonal
that will make the matrix singular. Eigenvalues are found by subtracting � along the main diagonal
and finding the set of � for which the determinant is zero. The following equation is referred to as
the characteristic equation for the matrix A.

det(A� � I) = 0

���������

a11 � � a12 · · · a1n
a21 a22 � � · · · a2n

...
...

...
an1 an2 · · · ann � �

���������

= 0

Why singular requirement?

You may be wondering why it is required that (A� � I) be a singular matrix. Let us call this
matrix C, and the columns of C will be labeled as ci. For C x = 0, it must be that either:
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1. c1 = c2 = . . . = cn = 0, and hence C = 0, which is not the case we are looking for.

2. x = 0, which is also not what we are looking for.

3. The columns of C are linearly dependent such that such that C x = 0. It is the linear
dependent property of the columns of C that yields C to be a singular matrix.

The determinant yields a degree-n polynomial, which can be factored to find the eigenvalue roots.

A =

⇥
2 2
2 �1

⇤

����
(2� �) 2

2 (�1� �)

���� = 0

(2� �)(�1� �)� 4 = 0
�2 � �� 6 = 0

(�� 3)(�+ 2) = 0

�1 = �2, �2 = 3

For the generalized 2-by-2 matrix, the coefficient of the � term in the quadratic equation is the
negative of the sum of the matrix diagonal (the trace), while the constant term is the determinant
of the matrix.

����
(a� �) b

c (d� �)

���� = 0

(a� �)(d� �)� bc = 0
�2 � (a+ d)�+ (ad� bc) = 0

Note: Two other properties of eigenvalues may be useful for finding and verifying them.

1. The trace of A is equal to the sum of the eigenvalues. The trace of a matrix is the sum of the
values along the forward diagonal. For a 2-by-2 matrix: a1,1 + a2,2 = �1 + �2.

2. The determinant of A is equal to the product of all of the eigenvalues.

Note: Eigenvalues, and hence eigenvectors, often have complex numbers. In some cases, algo-
rithms will force real eigenvalues by using symmetric matrices, which have only real eigenval-
ues. In some applications, when taking products and sums of eigenvalues and eigenvectors the
imaginary parts will cancel leaving only real numbers. In other cases, the presence of complex
eigenvalues implys oscillation in a system.
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Eigenvalues are not always unique – the same number may be repeated in the set of eigenvalues.
Such cases are called degenerate because the matrix does not have Linearly Independent Eigen-
vectors and thus can not factored using the Diagonalization procedure, which is required for some
application algorithms.

Roots of a Polynomial by Eigenvalues

See also:

If analytic roots are needed, see Solve.

To find numeric the roots of a non-polynomial function, see the Fzero function.

As we saw above, finding the eigenvalues of a matrix is equivalent to finding the roots of the
determinant of the characteristic equation. But as noted above, the algorithm that MATLAB uses
to find eigenvalues neither calculates a determinate nor finds the roots of a polynomial. Instead it
uses the faster algorithm described in Eigenvalue Computation in MATLAB.

Rather than finding polynomial roots to calculate eigenvalues, finding the roots of a polynomial is
instead an application of the eigenvalue algorithm. This is how the MATLAB function roots()
finds the roots of a polynomial. To take advantage of the eigenvalue algorithm, a matrix is cleverly
found that has eigenvalues equivalent to the roots of the polynomial.

An example should illustrate how this works. Consider the following polynomial equation.

f(x) = x3 � 4x2 + x+ 6

The argument passed to the roots() function is a row vector containing the coefficients of the
polynomial.

>> r = roots([1 -4 1 6])
r =

3.0000
2.0000

-1.0000

The poly() function is the inverse of roots() :

>> poly(r)
ans =

1.0000 -4.0000 1.0000 6.0000

The algorithm that roots() uses is short, but quite clever.

>> n = 3; % degree of the polynomial
>> p = [1 -4 1 6]; % coefficents
>> A = diag(ones(n-1,1),-1)
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A =
0 0 0
1 0 0
0 1 0

>> A(1,:) = -p(2:n+1)./p(1)
A =

4 -1 -6
1 0 0
0 1 0

>> r = eig(A)
r =

3.0000
2.0000

-1.0000

The determinant of the characteristic equation of A has the same coefficients and thus the same
roots as f(x).

������

(4� �) �1 �6
1 (��) 0
0 1 (��)

������
= 0

�3 � 4�2 + �+ 6 = 0

Finding Eigenvectors

The eigenvectors, xi (one per eigenvalue) lie in the same line as Axi: Axi = �i xi. Thus,

(A� �i I)xi = 0.

The solution to the above equation is called the null solution because we are looking for a vector,
xi, that sets the equation to zero. Given the matrix A and the eigenvalues, the eigenvectors can be
found with elimination or with MATLAB’s null function. See Null Space.

Now, we continue the previous example with elimination to find the eigenvectors.

�1 = �2:
⇥
4 2 0
2 1 0

⇤

Add �1/2 of row 1 to row 2 and then divide row 1 by 4:
⇥
1 1/2 0
0 0 0

⇤

x1a + 1/2 x1b = 0
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The second row of zeros occurs because it is a singular matrix. This means that we have a free
variable, so we can set one variable to any desired value (usually 1).

x1 =

⇥
1
�2

⇤

�2 = 3:
⇥
�1 2 0
2 �4 0

⇤

Add 2 of row 1 to row 2 and then divide row 1 by -1:
⇥
1 �2 0
0 0 0

⇤

x2a � 2 x2b = 0

x2 =

⇥
2
1

⇤

Two things to note about the eigenvectors returned from null : First, MATLAB always normal-
izes the vector (unit length). Secondly, eigenvectors may always be multiplied by a scalar. It is the
direction of the eigenvector that matters, not the magnitude. The definition of eigenvectors has the
same eigenvectors on both sides of the equality, making them invariant to scale.

Axi = �i xi

cAxi = c�i xi

>> A = [2 2;2 -1];
>> l1 = -2; l2 = 3; % the eigenvalues
>> N1 = A - l1*eye(2)
N1 =

4 2
2 1

>> N2 = A - l2*eye(2)
N2 =

-1 2
2 -4

>> x1 = null(N1) % normalized eigenvector
x1 =

-0.4472
0.8944

>> x1 = x1/x1(1) % scaled eigenvector
x1 =

1
-2

>> x2 = null(N2)
x2 =
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-0.8944
-0.4472

>> x2 = x2/X2(2)
X2 =

2
1

>> A*X1
ans =

-2
4

>> l1*X1
ans =

-2
4

>> A*X2
ans =

6
3

>> l2*X2
ans =

6
3

MATLAB has a function called eig that calculates both the eigenvalues and eigenvectors of a
matrix. The results are returned as matrices, which are useful in some applications. The eigen-
vectors are the columns of X . As with the null function, the eig function always normalizes
the eigenvectors (unit length). The eigenvalues are on the diagonal of L , the MATLAB function
diag(L) will return the eigenvalues from the diagonal as a row vector.

>> A = [2 2;2 -1];
>> [X, L] = eig(A)
X =

0.4472 -0.8944
-0.8944 -0.4472

L =
-2 0
0 3

Passing the matrix as symbolic math variable will show data closer to what we found when we
solved the problem by hand calculations.

>> [X, L] = eig(sym(A))
X =
[ -1/2, 2]
[ 1, 1]
L =
[ -2, 0]
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