
LU Decomposition
ETB 310: Data Analysis and Tools
Section 5.6 (pdf), Section 6.6 (online study guide)

Tim Bower

1/10

LU Decomposition

• An elimination based matrix factoring for square matrices
• No augmented matrix during elimination—only A
• A = LU and PA = LU
L is lower-triangular. U is upper-triangular.

• Two calls to triangular solver—forward and back
substitution
LU x = Pb L y = Pb U x = y

• Faster than Gaussian elimination. Elimination algorithm is
faster. Can reuse L and U with more than one b.

• Better numerical accuracy than Gaussian elimination.

2/10

Elimination

• Use elimination to change A to upper triangular as before.
• Capture row exchanges (partial pivoting) in permutation
matrix, P.
Capture row operations in elementary matrices, Ei.
Product of elementary matrices is the elimination matrix E.
A 7→ EPA = U

• Possible to skip E and build L during elimination.
PA = E−1U 7→ PA = LU

• Solving for x:

A x = b 7→ PTLU x = b [L, U, P] = lu(A);
x = A−1b 7→ x = U−1L−1Pb x = U\(L\(P*b));

3/10

Example


2x − 3y = 3
4x − 5y + z = 9
2x − y − 3z = −1

U =

 2 −3 0
0 1 1
0 0 −5


1. Add −1 of row 1 to row 3, called E1.
2. Add −2 of row 1 to row 2, called E2.
3. Add −2 of row 2 to row 3, called E3.

>> E1
E1 =

1 0 0
0 1 0

-1 0 1

>> E2
E2 =

1 0 0
-2 1 0
0 0 1

>> E3
E3 =

1 0 0
0 1 0
0 -2 1

4/10

Example continued

The order of matrices must be such that the first operation
applied is next to A in the equation U = EA.

>> E = E3*E2*E1
E =

1 0 0
-2 1 0
-1 -2 1

>> U = E*A
U =

2 -3 0
0 1 1
0 0 -5

>> L = inv(E1)*inv(E2)*inv(E3) % L = inv(E)
L =

1 0 0
2 1 0
1 2 1

Notice that non-diagonal values in L are negative of values in E.
Skip E and build L during elimination. 5/10

Example with Row Exchanges

A =

 0 12 −3
8 −4 −6
−4 −2 12

 P =

 0 1 0
1 0 0
0 0 1


Add 1/2 of row 1 to row 3

L =

 1 0 0
0 1 0

−1/2 0 1

 U =

 8 −4 −6
0 12 −3
0 −4 9


Add 1/3 of row 2 to row 3

L =

 1 0 0
0 1 0

−1/2 −1/3 1

 U =

 8 −4 −6
0 12 −3
0 0 8


6/10

Turing’s kij Algorithm

See file turingLU.m for the full function

function [L, U, P] = turingLU(A) % help skipped
[m, n] = size(A); % skipped check for square
P = eye(n);
for k = 1:(n - 1) % Skipped row exchange code

for i = k + 1:n
A(i, k) = A(i, k)/A(k, k);
for j = (k + 1):n

A(i, j) = A(i, j) - A(i, k) * A(k, j);
end

end
end
L = tril(A, -1) + eye(n); % extract lower
U = triu(A); % and upper triangular

7/10

Row Exchanges in LU Decompostion

See file turingLU.m for the full function

P = eye(n);
for k = 1:(n - 1)

[A(k:n,:), idx] = sortrows(A(k:n,:), k, ...
'descend', ...
'ComparisonMethod','abs');

I = P(k:n,:);
P(k:n,:) = I(idx,:); % Permutation matrix

% Next comes i,j elimination portion
% of the k,i,j loop

8/10

Comments on Turing’s kij Algorithm

• Down the diagonal: for k = 1:(n - 1)
• Down the column below the diagonal: for i = k + 1:n
• Set value for L matrix: A(i, k) = A(i, k)/A(k, k);
• Across each row: for j = (k + 1):n
• Row operations:
A(i, j) = A(i, j) - A(i, k) * A(k, j);

• Three regions of each row
1. L matrix value at A(i, k)
2. For future L values from A(i, k+1) to A(i, i-1)
3. For future U values from the diagonal to the end of the row
(A(i, i) to A(i, n)

9/10

Determinant Shortcut

The determinant of A is the product of its factors’ determinants.

|A| = |PT| |L| |U|.

• |PT| = |P| is either 1 or -1.
• |L| = 1
• |U| is the product of its diagonal.

>> [L, U, P] = lu(A);
>> determinant = det(P)*prod(diag(U));

10/10

