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6.10.5 Systems of Linear ODEs

See also:

In this 19 minute video MIT professor Gilbert Strang explains how eigenvectors and eigenvalues
give us the solution to a system of first order, linear ordinary differential equations.

Differential equations that come up in engineering design and analysis are usually systems of
equations, rather than a single equation. Fortunately, they are often first order linear equations. As
discussed in the Symbolic Differential Equations section, the Symbolic Math Toolbox can solve
many differential equations expressed by a single equation. Higher order and non-polynomial
systems of ODEs need numerical methods, such as discussed in the Numeric Differential Equations

section. However, systems of first order linear ODEs may be solved analytically with eigenvalues
and eigenvectors.

Equations with exponents of the special number e have the special property that it is the only
function whose derivative is a scalar multiple of itself. Specifically,

d ea t

dt
= a ea t.

Thus, it follows that ODEs of the form

dy(t)

dt
= a y(t)

have the solution

y(t) = c ea t.

Note: Do you see why the derivative of ea t is a scalar multiple of itself? If we don’t use the
known derivative of ea t, we can either take the derivative of its Maclaurin (Taylor) series, or use it
numeric definition in terms of a limit. I will use the later.

ea t = lim
n�⇥

�
1 +

a t

n

⇥n

You need to use the chain rule to take the derivative. If f(t) =
⇤
1 + a t

n

⌅n, then f ⇤(t) =

a
⇤
1 + a t

n

⌅n⌅1. We see the desired equality then in the limit.

ea t = limn�⇥ f(t)

d
dt (e

a t) = limn�⇥ f ⇤(t) = a limn�⇥ f(t) = a ea t

212 Chapter 6. Introduction to Linear Algebra



Applied Data Analysis and Tools Study Guide, Release 1

The same principle applies to systems of ODEs, except that we use vectors and matrices to describe
the equations.

⇧
⌃⌃⌃⌃⌥

⌃⌃⌃⌃�

y⇤1 = a11 y1 + a12 y2 + · · ·+a1n yn

y⇤2 = a21 y1 + a22 y2 + · · ·+a2n yn
...

y⇤n = an1 y1 + an2 y2 + · · ·+ann yn

In matrix notation, this is

y� = Ay.

The solution has the form

y(t) = c1e
⇧1 tx1 + c2e

⇧2 tx2 + · · ·+ cne
⇧n txn

The set of scalar values { 1, 2, · · · , n} are the eigenvalues of matrix A. The vectors
{x1,x2, · · · ,xn} are the eigenvectors of A.

After we learn about Diagonalization and Powers of A, we will have seen enough linear algebra
to see where this solution comes from. The solution is derived in the appendix under section A

Matrix Exponent and Systems of ODEs.

ODE Example

Consider the set of ODEs and initial conditions,
 
y1(t)⇤ = �2 y1(t) + y2(t)

y2(t)⇤ = y1(t) � 2 y2(t)
,

 
y1(0) = 6

y2(0) = 2
.

In matrix notation,

y⇤ =

⌦
�2 1
1 �2

↵
y, y(0) =

⌦
6
2

↵
.

We first use MATLAB to find the eigenvalues and eigenvectors. MATLAB always returns normal-
ized eigenvectors, which can be multiplied by a constant to get simpler numbers.

>> A = [-2 1; 1 -2];
>> [X,lambda] = eig(A)
X =

0.7071 0.7071
-0.7071 0.7071

lambda =
-3 0
0 -1

>> X = X*2/sqrt(2)
X =

1.0000 1.0000
-1.0000 1.0000
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The columns of the X matrix are the eigenvectors. The eigenvalues are on the diagonal of lambda
. Our solution has the form

y(t) = c1 e
⌅3t

⌦
1

�1

↵
+ c2 e

⌅t

⌦
1
1

↵

At the initial condition, the exponent terms become 1.

y(0) = c1

⌦
1

�1

↵
+ c2

⌦
1
1

↵
=

⌦
1 1

�1 1

↵ ⌦
c1
c2

↵
= X c

>> y0 = [6;2];
>> c = X\Y0
c =

2.0000
4.0000

 
y1(t) = 2 e⌅3t + 4 e⌅t

y2(t) = �2 e⌅3t + 4 e⌅t

Note: Some ODE systems have complex eigenvalues. When this occurs, the solution will have
sine and cosine oscillating terms because of Euler’s formula, ej x = cos(x) + j sin(x).
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