
Tallest Buildings Exercise

The data in the file tallest_bldgs.txt contains information on the world's 200 tallest buildings 
as of the year 2010. The variables in this file are: bldg_name, city, country, year, 
stories, height_m

• bldg_name: building name
• city: city in which the building is located
• country: country in which building is located
• stories: the number of stories
• year: the year in which the building was structurally completed.
• height_m: height in meters

1. From the command window, import the data in the file 'tallest_bldgs.txt' and save it to a table named 
buildings.

>> buildings = readtable('tallest_bldgs.txt');

2. The dot notation (tableName.VariableName) may be used to create a MATLAB column vector from 
a table variable. Create a numeric vector named height_feet which contains the heights of all the 
buildings converted into feet. (1 meter = 3.28084 feet)

>> height_feet = buildings.height_m * 3.28084;

3. Modify the existing buildings table to include an additional variable called height_m at the end 
containing the height data you just calculated. Notice the use of the curly brackets, {} as one way to 
add a variable to a table. The curly brackets are also a good way to work with a subset of a table.

>> buildings{:,'height_feet'} = height_feet;

4. The dot notation is simplest when working with all of the data from a table variable. Remove the 
height_m table variable.

>> buildings.height_m = [];

5. The sorting capability is a good reason for using tables to hold data. Sort the values in the buildings 
table in order of decreasing height.

>> buildings = sortrows(buildings, 'height_feet', 'descend');

6. Indexing a table using parenthesis can create a table from a portion of the original table. If curly 
brackets were used, a vector or matrix would be created from the table data. Create a table that contains
the data of the five tallest buildings.

>> fiveTallest = buildings(1:5,:)

7. Write the contents of fiveTallest to a file named 'tallBldgs.txt'.
>> writetable(fiveTallest, 'tallBldgs.txt');

8. Create a logical vector of the buildings over 1000 feet tall.
>> over1k = buildings.height_feet > 1000;

9. Find the number of buildings that are over 1000 feet tall. Store the result in n1k.
>> n1k = nnz(over1k);



10. Create a table of the buildings over 1000 feet tall.
>> tallest = buildings(over1k,:);
>> tallest(1:5,:)
>> tallest(end-4:end,:)

11. Sort the tallest buildings by age. The default sorting order is ascending.
>> oldtall = sortrows(tallest,'year');
>> oldtall(1:5,:)

12. Using the table dot notation, table variables may be used column vectors with results saved to a 
new table variable. Determine which buildings have the most and least head room on each floor (story).

>> buildings.feet_per_story = buildings.height_feet./buildings.stories;
>> buildings = sortrows(buildings, 'feet_per_story', 'descend');
>> buildings(1:5,:)
>> buildings(end-4:end,:)


