Finding Eigenvalues $Ax = \lambda x \Rightarrow (A - \lambda I)x = O$ $C = (A - \lambda I), The shift of A$ along the diagonal such that it is singular. $l. det(A - \lambda I) = 0$ see the study guide for 2x2 examples. Not so good for matrices larger than 2. How MATLAB does it. -more in the Lin Algebra Appendix. -more in the Lin Algebra Appendix. () A -> Q Q has orthogonal Columns. ACOR Columns. 272. Gram schmidt algoritm via projections of columns [Q,R] = gr(A);A = R * Q;of A. A=QR=> R=QTA 5) A and RQ are similar A = RQ matrices, meaning that C) they have the same eigenvalues.

d) repeat steps
$$a-c$$

until:
i) Q is an identity
metrix.
iii) $A \equiv RQ$ is
upper triangular.
iii) $A = RQ$ is
upper triangular.
e) Eigenvalues are
on the diagonal of new
A.
 $det(c) = \begin{pmatrix} a_{11}-\lambda_1 & a_{12} & a_{13} \\ a_{22}-\lambda_2 & a_{23} \\ a_{33}-\lambda_3 \end{pmatrix} = (q_{11}-\lambda_1)(a_{22}-\lambda_2)$
 $(q_{33}-\lambda_3)=0$
Roots of the polynomial are
the diagonal values:
 $a_{11}, a_{22}, a_{33}, \cdots$