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6.4 Systems of Linear Equations

Engineers love linear equations! They are everywhere in the systems that engineers design. Many
(maybe most) systems are linear. Systems are sometimes described by differential equations, but
these equation sets can usually be changed to linear equations by application of the Laplace trans-
form. The main point though is that in real word design and analysis applications, we have systems
of equations with multiple unknown variables, not just one equation.

In the Linear System Applications section, we will consider some examples of where systems of
linear equations come from. For now, we will consider how to solve them.

6.4.1 An Example

The following system of equations have three unknown variables.
�
⇥

⇤

2x � 3y = 3

4x � 5y + z = 7

2x � y � 3z = 5

The first step is to represent the equations in terms of matrices.
⌅

⇧
2 �3 0
4 �5 1
2 �1 �3

⌃

⌥

⌅

⇧
x
y
z

⌃

⌥ =

⌅

⇧
3
7
5

⌃

⌥

The common notation for describing this equation is Ax = b, where the vector x represents
the unknowns. In linear algebra notation, we describe the solution to the problem in terms of the
Calculating a Matrix Inverse. Note that because matrix multiplication is not commutative, we have
to be careful about the order of the terms.

A�1 Ax = x = A�1 b

MATLAB, can solve the problem this way with the inv function, but MATLAB has a more
efficient way to solve it.

6.4.2 Jumping Ahead to MATLAB

MATLAB’s left-divide operator \ solves systems of linear equations just as is accomplished by
multiplying by the inverse of a matrix, but it is computationally more efficient.

>> A = [2 -3 0;4 -5 1;2 -1 -3];
>> b = [3 7 5]';
>> x = A\b
x =
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3.0000
1.0000
0.0000

Thus, the values of the three unknown variables are: x = 3, y = 1, and z = 0.

6.4.3 Elimination

Gaussian elimination is a procedure for changing a matrix to a form where the solution is simple
to calculate. A sequence of linear operations are applied to the rows of the matrix to produce an
upper triangular matrix. Such a matrix has all zeros below the main diagonal.

Three operations are allowed in elimination.

1. Swap two rows – this step done first can reduce the number of additional elimination steps.

2. Add a multiple of one row to another row, replacing that row.

3. Multiply a row by a nonzero constant.

When a row has all zeros to the left of the main diagonal, that non-zero element on the diagonal
is called the pivot. The pivot is used to determine a multiple of the row to add to another row to
produce a needed zero.

We begin with our classic matrix equation Ax = b. Any operations done on the A matrix must
also be applied to the b vector. After elimination, we have U x = c, where U is an upper triangular
matrix of the form:

U =

⌅

⇧
u1,1 u1,2 u1,3

0 u2,2 u2,3

0 0 u3,3

⌃

⌥

Note: One could continue the elimination steps until the U is an identity matrix, but it is faster to
stop at an upper triangular matrix and use back substitution as illustrated in the example below.

To help carry forward the operations to the right side of the equation, we form an augmented
matrix. Using the numbers from our previous example, we have the following. The pivots in each
step are underlined.

⌅

⇧
2 �3 0 3
4 �5 1 7
2 �1 �3 5

⌃

⌥

Add -1 of row 1 to row 3.

⌅

⇧
2 �3 0 3
4 �5 1 7
0 2 �3 2

⌃

⌥
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Add -2 of row 1 to row 2. The pivot then moves to row 2.

⌅

⇧
2 �3 0 3
0 1 1 1
0 2 �3 2

⌃

⌥

Add -2 of row 2 to row 3 to finish the row operations.

⌅

⇧
2 �3 0 3
0 1 1 1
0 0 �5 0

⌃

⌥

Our matrix equation is now in the upper triangular form.
⌅

⇧
2 �3 0
0 1 1
0 0 �5

⌃

⌥

⌅

⇧
x
y
z

⌃

⌥ =

⌅

⇧
3
1
0

⌃

⌥

The final step is now called back substitution where we start at the last row and work up to deter-
mine the values of the variables.

�
⇥

⇤

� 5z = 0

y + 0 = 1

2x � 3 + 0 = 3

x = 3, y = 1, z = 0

Practice Problem

Here is another system of equations with an integer solution. Use elimination to solve for
variables x1, x2, x3. Then use MATLAB to verify your answer.

�
⇥

⇤

�3x1 + 2x2 � x3 = �1

6x1 � 6x2 + 7x3 = �7

3x1 � 4x2 + 4x3 = �6

6.4.4 Elimination to Find the Matrix Inverse

The Gauss–Jordan method uses elimination to calculate the inverse of a matrix. We start with an
augmented matrix of the form [A|I] and do row operations until we have [I|A�1].

⌅

⇧
2 �3 0 1 0 0
4 �5 1 0 1 0
2 �1 �3 0 0 1

⌃

⌥

Add -1 of row 1 to row 3.
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⌅

⇧
2 �3 0 1 0 0
4 �5 1 0 1 0
0 2 �3 �1 0 1

⌃

⌥

Add -2 of row 1 to row 2. The pivot then moves to row 2.

⌅

⇧
2 �3 0 1 0 0
0 1 1 �2 1 0
0 2 �3 �1 0 1

⌃

⌥

Add -2 of row 2 to row 3.

⌅

⇧
2 �3 0 1 0 0
0 1 1 �2 1 0
0 0 �5 3 �2 1

⌃

⌥

Add 3 of row 2 to row 1. The pivot then moves to row 3.

⌅

⇧
2 0 3 �5 3 0
0 1 1 �2 1 0
0 0 �5 3 �2 1

⌃

⌥

Add 3/5 of row 3 to row 1; and add 1/5 of row 3 to row 2. Then a pivot is no longer needed.

⌅

⇧
2 0 0 �16/5 9/5 3/5
0 1 0 �7/5 3/5 1/5
0 0 �5 3 �2 1

⌃

⌥

Divide row 1 by 2; and divide row 3 by -5.

⌅

⇧
1 0 0 �16/10 9/10 3/10
0 1 0 �7/5 3/5 1/5
0 0 1 �3/5 2/5 �1/5

⌃

⌥

A�1 =

⌅

⇧
�1.6 0.9 0.3
�1.4 0.6 0.2
�0.6 0.4 �0.2

⌃

⌥
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Note: This result matches what MATLAB found in the Calculating a Matrix Inverse section.
All of the tedious row operations certainly makes one appreciate that MATLAB can perform the
calculations for us.

6.4.5 The Row and Column View

A system of linear equations may be viewed from either the perspective of its rows or its columns.
Both of these views can be plotted to give us a geometric understanding of systems of linear
equations. The row view is what is most commonly known from algebra. It shows each row of the
system as a line where the solution is the point where the lines intersect. The column view shows
each column as a vector and presents the solution as a linear combination of the column vectors.
The column view yields a very useful perspective that will be especially useful when we consider
over-determined systems.

Let’s illustrate the two views with a simple example.
�

2x + y = 4

�x + y = 1

 
2 1
�1 1

⌦  
x
y

⌦
=

 
4
1

⌦

Using elimination to find the solution:
 

2 1 4
�1 1 1

⌦

Add 1/2 of row 1 to row 2:
 
2 1 4
0 3/2 3

⌦

�
3
2y = 3 ⇥ y=2

2x + 2 = 4 ⇥ x=1
 

2 1
�1 1

⌦  
1
2

⌦
=

 
4
1

⌦

Row View Plot
�
y = �2x + 4

y = x + 1
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Fig. 6.7: In the row view of a system of equations, the solution is where line equations intersect.

If we had only one equation, or two equations that plot parallel lines, then we have the under-
determined case where there is no intersection and no solution.

Additional equations could be added (over-determined). If the additional equations plot a line
that intersects at the same point, then we still have an exact solution. If it does not intersect the
other lines at the same point, then we can only approximate a solution, which we will cover in the
Over-determined Systems and Vector Projections section.

Column View Plot

Let’s view the system of equations as a linear combination of column vectors.

1◊
 
2
�1

⌦
+ 2◊

 
1
1

⌦
=

 
4
1

⌦

If we only had one equation (under-determined), then the set of possible end points of the vector
is a line, not a point.

For a full rank matrix, there should always be a non-zero linear combination of the vectors that can
reach any point on the plane except the origin, (0, 0). If vector b is non-zero, then it is always in
the column space of A when A is full rank. The all-zero multipliers provides the only way to get
to back to the origin for a full rank system. But a singular system with parallel vectors can have a
non-zero linear combination leading back to the origin – this is called the null solution. (See Null
Space)

If another row is added to the system making it over-determined, then the plot moves from R2 to
R3. There can still be an exact solution as long the new row is in the same column space that was
established by the first two rows. For example, we could add the equation 3x + 2y = 7 to the
system and x = 1; y = 2 is still valid. Thus we could still say that b is still in the column space of
A.
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Fig. 6.8: The column view of a system of equations shows a linear combination of vectors. The
solution is the scaling of each vector such that the head of the last vector is at the head of the vector
on the right side of the equation.

In the Column Space of A

Consider the columns of matrix A as a set of vectors. The set of vectors that can be formed from
linear combinations of this set of vectors is called the span of the columns of A. A vector that is
part of the span of the columns of A is said to be in the column space of A.

6.4.6 When Does A Solution Exist?

Not every matrix equation of the form Ax = b has a unique solution. There must be an equal
number of independent equations as there are unknown variables. A few tests can help to determine
if a unique solution exists. The matrix in question here has m rows and n columns (m-by-n).

Note: Solutions to systems of equations of the form Ax = b, may:

1. not exist

2. be an exact, unique solution

3. be an infinite set of vectors

4. be only an approximation

rank

The rank of a matrix is the number of non-zero pivots during elimination, which is also the
number of independent equations. Rank is never more than the smaller dimension of the
matrix. A square matrix with rank equal to the number of rows and columns is said to be full
rank. Full rank matrices have all non-zero pivots.
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When a row or column is a linear combination of others rows or columns, then a pivot will
be zero and the rank is reduced.

MATLAB has a rank function which takes a matrix as input.

Solution Requirements for Ax = b

1. The A matrix is usually square (m = n).

2. The square matrix A must be full rank, rank(A) = m = n. When m > n, then it is required
that rank(A) = min(size(A)).

3. The determinant of A may not equal zero. This is a well known test for A being invertible
(not singular). It is also can be used as a solution test when the size of A is relatively small,
but it is slow for larger matrices. The previous tests of rank are sufficient.

This example does not have a solution.

>> A = [1 2 3; 0 3 1; 1 14 7]
A =

1 2 3
0 3 1
1 14 7

% Third row of A is a linear combination of rows 1 and 2
>> 4*A(2,:) + A(1,:)
ans =

1 14 7

% A is not full rank
>> rank(A)
ans =

2

% Not invertible
>> det(A)
ans =

0

>> b = [1; 2; 3];

>> % This won't go well ...
>> A \ b
Warning: Matrix is singular to working precision.
ans =

NaN
-Inf
Inf
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Note: Based on the RREF of the augmented matrix and the application, a row or column might
be removed and then the system solved as either an under-determined or over-determined system.

This example will go better. Notice that it is not necessary to calculate the determinant of A.
Sufficient condition is determined by the rank: rank(A) = rank([A b]) = m = n. Note that
the rank of the augmented matrix is only needed to determine if an exact solution existed for an
over-determined matrix (m > n), but it also verifies that vector b is in the column space of a square
matrix A.

>> A = randi(10, 3, 3) - 4
A =

5 6 -1
6 3 2

-2 -3 6
>> b = randi(10, 3, 1) - 2
b =

8
0
8

>> rank(A) % full rank
ans =

3

% The next line is not needed because the matrix is square and full
��rank.
>> rank([A b]) % b is in the column space of A.
ans =

3
>> x = A \ b
x =

-2.8889
4.1481
2.4444

Under-determined case:

When m < n, there are not enough equations and no unique solution exists. In this case,
the A matrix is called under-determined. Although a unique solution does not exist, it is
possible to find an infinite set of solutions, such as all of the points on a line or a plane. This
will be discussed in Under-determined Systems and RREF.

Over-determined case:

When m > n, there are more equations than unknowns. In this case, the A matrix is called
over-determined.

Pre-multiplying both A and b by AT makes the left side of the equation a square matrix,
which is needed for the elimination algorithms of either the inverse, inv , or left–divide, \ ,
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operations, i.e., ATAx = ATb. In fact, when m > n, the left–divide operator automatically
pre-multiplies by AT to make the matrix square.

In some cases, when b is in the column space of A, then an exact solution exists. That is, b
can be written as a linear combination of the columns of A. You can test for this by verifying
that rank([A b]) = rank(A).

When b is not in the column space of A, the only solution available is an approximation. We
will discuss the over-determined case in more detail in Over-determined Systems and Vector
Projections.

Note: Now complete Matrix Homework.
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A
(4×3)

[AI]
4X4

ran KLA) =3 rank LEAD])
=3 - exact

= 4 - approximation


