
Principal Component Analysis - A Tutorial

Alaa Tharwat
Electrical Department, Faculty of Engineering, Suez Canal University,
Ismailia, Egypt

E-mail: emgalaatharwat@hotmail.com

Abstract: Dimensionality reduction is one of the preprocessing steps in many
machine learning applications and it is used to transform the features into a lower
dimension space. Principal Component Analysis (PCA) technique is one of the
most famous unsupervised dimensionality reduction techniques. The goal of the
PCA is to find the space, which represents the direction of the maximum variance
of the given data. This paper highlights the basic background needed to understand
and implement the PCA technique. This paper starts with basic definitions of the
PCA technique and the algorithms of two methods of calculating PCA, namely, the
covariance matrix and Singular Value Decomposition (SVD) methods. Moreover,
a number of numerical examples are illustrated to show how the PCA space
is calculated in easy steps. Three experiments are conducted to show how to
apply PCA in the real applications including biometrics, image compression, and
visualization of high-dimensional datasets.

Keywords: Principal Component Analysis (PCA); Dimensionality Reduction;
Feature Extraction; Covariance Matrix; Singular Value Decomposition (SVD);
PCA Space; Biometrics; Image Compression.

Biographical notes: Alaa Tharwat received his BSc in 2002 and MSc in
2008, from Faculty of Engineering, Computer and Control Systems Department,
Mansoura University, Egypt. He is an Assistant Lecturer at Electrical Department,
Faculty of Engineering, Suez Canal University, Egypt. He was a researcher at
Gent University, within the framework of the Welcome project - Erasmus Mundus
Action 2 - with a title "Novel approach of multi-modal biometrics for animal
identification". He is an author of many research studies published at national
and international journals, conference proceedings. His major research interests
include pattern recognition, machine learning, digital image processing, biometric
authentication, and bio-inspired optimization

Copyright © 2009 Inderscience Enterprises Ltd.

2 author

1 Introduction

Dimensionality reduction techniques are important in many applications related to data
mining (Tharwat et al., 2012; Bramer, 2013; Larose, 2014), Bioinformatics (Saeys et al.,
2007), information retrieval (Venna et al., 2010), machine learning (Duda et al., 2012), and
chemistry (Chiang et al., 2000). The main goal of the dimensionality reduction techniques
is to transform the data or features from a higher dimensional space to a lower dimensional
space. There are two major approaches of the dimensionality reduction techniques, namely,
unsupervised and supervised approaches (Tenenbaum et al., 2000; Kirby, 2000; Duda et
al., 2012).

In the supervised approach, the class labels are used to find the lower dimensional space.
Supervised approaches have been used in many applications such as Biometrics (Lu et
al., 2003; Cui, 2012) and Bioinformatics (Wu et al., 2009). The supervised approach has
many techniques such as Mixture Discriminant Analysis (MDA) (Hastie and Tibshirani,
1996), Neural Networks (NN) (Hinton and Salakhutdinov, 2006), and Linear Discriminant
Analysis (LDA) (Scholkopft and Mullert, 1999). In the unsupervised approach, the lower
dimensional space is found without using the class labels and it is suitable for more
applications such as visualization (Müller and Schumann, 2006; Barshan et al., 2011),
data reduction (Kambhatla and Leen, 1997; Jolliffe, 2002), and noise removal (Thomas
et al., 2006). There are many unsupervised dimensionality reduction techniques such
as Independent Component Analysis (ICA) (Hyvärinen et al., 2004), Locally Linear
Embedding (LLE) (Roweis and Saul, 2000), and Principal Component Analysis (PCA)
(Dash et al., 1997; Belkin and Niyogi, 2003; Tharwat et al., 2015; Gaber et al., 2015), which
is the most common dimensionality reduction technique.

PCA technique has many goals including finding relationships between observations,
extracting the most important information from the data, outlier detection and removal,
and reducing the dimension of the data by keeping only the important information. All
these goals are achieved by finding the PCA space, which represents the direction of the
maximum variance of the given data (Turk and Pentland, 1991). The PCA space consists of
orthogonal principal components, i.e. axes or vectors. The principal components (PCs) are
calculated by solving the covariance matrix or using Singular Value Decomposition (SVD).

This paper gives a detailed tutorial about the PCA technique and it is divided into four
sections. In Section 2, a clear definition of the basic idea of the PCA and its background
are highlighted. This section begins by explaining how to calculate the PCs using the
covariance matrix and SVD methods, how to construct the PCA space from the calculated
PCs, projecting the data on the PCA space, and reconstruct the original data again from
the PCA space. Moreover, the steps of calculating the PCS, PCA space, and projecting the
data to reduce its dimension are summarized and visualized in detail. Section 3 illustrates
numerical examples to show how to calculate the PCA space and how to select the most
robust eigenvectors to build the PCA space. Moreover, the PCs are calculated using the two
methods, i.e. covariance matrix and SVD. In Section 4, three experiments are conducted to
show: (1) How the PCA technique is used in the real applications such as biometrics, image

A Tutorial on Principal Component Analysis 3

x1

x2

PCA

PC1

PC2

ℜ	

M
ℜ	

k

Orthogonal Transformation
Axes Rotation

PC1
(Direction of the

maximum variance)

PC2

σ1σ2
2

2

Figure 1: Example of the two-dimensional data (x1, x2). The original data are on the left
with the original coordinate, i.e. x1 and x2, the variance of each variable is graphically
represented and the direction of the maximum variance, i.e. the principal component PC1,
is shown; on the right the original data are projected on the first (blue stars) and second
(green stars) principal components.

compression, and visualization; (2) The influence of the number of the selected eigenvectors
on the amount of the preserved data. Finally, concluding remarks will be given in Section
5.

2 Principal Component Analysis (PCA)

2.1 Definition of PCA

The goal of the PCA technique is to find a lower dimensional space or PCA space (W)
that is used to transform the data (X = {x1, x2, . . . , xN}) from a higher dimensional space
(RM) to a lower dimensional space (Rk), where N represents the total number of samples
or observations and xi represents ith sample, pattern, or observation. All samples have the
same dimension (xi ∈ RM). In other words, each sample is represented by M variables,
i.e. each sample is represented as a point in M -dimensional space (Wold et al., 1987). The
direction of the PCA space represents the direction of the maximum variance of the given
data as shown in Figure 1. As shown in the figure, the PCA space is consists of a number
of PCs. Each principal component has a different robustness according to the amount of
variance in its direction.

4 author

2.2 Principal Components (PCs)

The PCA space consists of k principal components. The principal components are
orthonormala, uncorrelatedb, and it represents the direction of the maximum variance.

The first principal component ((PC1 or v1) ∈ RM×1) of the PCA space represents the
direction of the maximum variance of the data, the second principal component has the
second largest variance, and so on. Figure 1 shows how the original data are transformed
from the original space (RM) to the PCA space (Rk). Thus, the PCA technique is considered
an orthogonal transformation due to its orthogonal principal components or axes rotation
due to the rotation of the original axes (Wold et al., 1987; Shlens, 2014). There are two
methods to calculate the principal components. The first method depends on calculating the
covariance matrix, while, the second one uses the SVD method.

2.3 Covariance Matrix Method

In this method, there are two main steps to calculate the PCs of the PCA space. First,
the covariance matrix of the data matrix (X) is calculated. Second, the eigenvalues and
eigenvectors of the covariance matrix are calculated. Figure 2 illustrates the visualized steps
of calculating the PCs using the covariance matrix method.

2.3.1 Calculating Covariance Matrix (Σ):

The variance of any variable measures the deviation of that variable from its mean value
and it is defined as follows, σ2(x) = V ar(x) = E((x− µ)2) = E{x2} − (E{x})2, where
µ represents the mean of the variable x, and E(x) represents the expected value of x.
The covariance matrix is used when the number of variables more than one and it is
defined as follows, Σij = E{xixj} − E{xi}E{xj} = E[(xi − µi)(xj − µj)]. As shown
in Figure 2, step(A), after calculating the mean of each variable in the data matrix, the
mean-centring data are calculated by subtracting the mean (µ ∈ R(M×1)) from each sample
as follows, D = {d1, d2, . . . , dN} = {x1 − µ, x2 − µ, . . . , xN − µ} (Turk and Pentland,
1991; Bishop, 2006; Shlens, 2014). The covariance matrix is then calculated as follows,
Σ = DDT (see Figure 2, step (B)).

Covariance matrix is a symmetric matrix (i.e. X = XT) and always positive semi-definite
matrix c. The diagonal values of the covariance matrix represent the variance of the variable

aOrthonormal vectors have a unit length and orthogonal as follows, vTi vj =

{
1, i = j
0, i 6= j

bvi and vj are uncorrelated if Cov(vi, vj) = 0, i 6= j, where Cov(vi, vj) represents the covariance between
the ith and jth vectors.

cX is positive semi-definite if vTXv ≥ 0 for all v 6= 0. In other words, all eigenvalues of X are ≥ 0.

A Tutorial on Principal Component Analysis 5

X=

x1 x2

(MxN)

xN

DataLMatrixL
(X)

ــ

MeanL
(μ)

(Mx1)

=

d1 d2 dN

(MxN)Data
Sample

λ1

λ2 λM

V1 VMV2

Sorted
Eigenvalues

Eigenvectors

kLSelected
Eigenvectors

Vk

λk

LargestLkL
Eigenvalues

PCA
LSpace

(Mxk)

Σ=

DDT

(MxM)

CovarianceLMatrixL
Method

CovarianceL
MatrixL(Σ)

CalculatingLEigenvaluesLandL
Eigenvectors

AB

AA

ABABAC

Mean-CentringLDataL
(D=X-μ)

Figure 2: Visualized steps to calculate the PCA space using the covariance matrix method.

xi, i = 1, . . . ,M , while the off-diagonal entries represent the covariance between two
different variables as shown in Equation (1). A positive value in covariance matrix means a
positive correlation between the two variables, while the negative value indicates a negative
correlation and zero value indicate that the two variables are uncorrelated or statistically
independent (Shlens, 2014).

V ar(x1, x1) Cov(x1, x2) . . . Cov(x1, xM)
Cov(x2, x1) V ar(x2, x2) . . . Cov(x2, xM)

...
...

. . .
...

Cov(xM , x1)Cov(xM , x2) V ar(xM , xM)

 (1)

6 author

2.3.2 Calculating Eigenvalues (λ) and Eigenvectors (V):

The covariance matrix is solved by calculating the eigenvalues (λ) and eigenvectors (V) as
follows:

V Σ = λV (2)

where V and λ represent the eigenvectors and eigenvalues of the covariance matrix,
respectively.

The eigenvalues are scalar values, while the eigenvectors are non-zero vectors, which
represent the principal components, i.e. each eigenvector represents one principal
component. The eigenvectors represent the directions of the PCA space, and the
corresponding eigenvalues represent the scaling factor, length, magnitude, or the robustness
of the eigenvectors (Hyvärinen, 1970; Strang and Aarikka, 1986). The eigenvector with
the highest eigenvalue represents the first principal component and it has the maximum
variance as shown in Figure 1 (Hyvärinen, 1970). The eigenvalues may be equal when the
PCs have equal variances and hence all the eigenvectors are the same and we cannot decide
which eigenvectors are used to construct the PCA space.

2.4 Singular Value Decomposition (SVD) Method

In this method, the principal components are calculated using SVD method. A visualized
steps of calculating the principal components using SVD method are illustrated in Figure
3.

2.4.1 Calculating SVD:

Singular value decomposition is one of the most important linear algebra principles. The
aim of the SVD method is to diagonalize the data matrix (X ∈ Rp×q) into three matrices
as in Equation (3).

X = LSRT =

l1 · · · lp



s1 0 0 0
0 s2 0 0

0 0
. . . 0

0 0 0 sq
...

...
...

...
0 0 0 0




−rT1 −
−rT2 −

...
−rTq −

 (3)

A Tutorial on Principal Component Analysis 7

λ1

λ2 λM

V1 VMV2

SortedN
Eigenvalues

Eigenvectors

kNSelected
Eigenvectors

Vk

λk

LargestNkN
Eigenvalues

PCA
NSpace

-W)

-Mxk)

li

-NxN)

L S

-MxM)

M

M

RT

ri

V1 V2 Vk

X=

x1 x2

-MxN)

xN

DataNMatrixN-X)

ــ

MeanN-μ)

-Mx1)

=

d1 d2 dN

-MxN)

Data
Sample

si

λi=si
2

SingularNValueN
DecompositionNMethod

AA

AB

AC

Mean-CentringN
DataN-D=X-μ)

d1
d2

dN

Transpose

DT

-NxM)

N

M

Figure 3: Visualized steps to calculate the PCA space using SVD method.

where L(p× p) are called left singular vectors, S(p× q) is a diagonal matrix represents
the singular values that are sorted from high-to-low, i.e. the highest singular value in
the upper-left index of S, thus, s1 ≥ s2 ≥ · · · ≥ sq ≥ 0, and R(q × q) represents the
right singular vectors. The left and right singular matrices, i.e. L and R, are orthonormal
bases. To calculate SVD, RT and S are first calculated by diagonalizing XTX as
follows,XTX = (LSRT)T (LSRT) = RSTLTLSRT = RS2RT , where LTL = I . The

8 author

left singular vectors (L) is then calculated as follows, L = XRS−1, where Xri is in the
direction of sili (Alter et al., 2000; Greenberg, 2001; Wall et al., 2003). The columns of the
right singular vectors (R) represent the eigenvectors of XTX or the principal components
of the PCA space, and s2i , ∀ i = 1, 2, . . . , q represent their corresponding eigenvalues as
shown in Figure 3, steps (B & C). Since, the number of principal components and their
eigenvalues are equal to q, thus the dimension of our original data matrix must be reversed
to be compatible with SVD method. In other words, the mean-centring matrix is transposed
before calculating the SVD method and hence each sample is represented by one row as
shown in Figure 3, step (A).

2.4.2 SVD vs. Covariance Matrix Methods

To compute the PCA space, the eigenvalues and eigenvectors of the covariance matrix are
calculated, where the covariance matrix is the product of DDT , where D = {di}Ni=1, di =
xi − µ. Using Equation (3) that is used to calculate SVD, the covariance matrix can be
calculated as follows:

DDT = (LSRT)T (LSRT) = RSTLTLSRT (4)

where LTL = I

DDT = RS2RT = (SV D(DT))2 (5)

where S2 represents the eigenvalues of DTD or DDT and the columns of the right
singular vector (R) represent the eigenvectors of DDT . To conclude, the square root of the
eigenvalues that are calculated using the covariance matrix method are equal to the singular
values of SVD method. Moreover, the eigenvectors of Σ are equal to the columns of R.
Thus, the eigenvalues and eigenvectors that are calculated using the two methods are equal.

2.5 PCA Space (Lower Dimensional Space)

To construct the lower dimensional space of PCA (W), a linear combination of k selected
PCs that have the most k eigenvalues are used to preserve the maximum amount of variance,
i.e. preserve the original data, while the other eigenvectors or PCs are neglected as shown
in Figures 2(step C) and 3(step C). The lower dimensional space is denoted by W =
{v1, . . . , vk}. The dimension of the original data is reduced by projecting it after subtracting
the mean onto the PCA space as in Equation (6).

Y = WTD =

N∑
i=1

WT (xi − µ) (6)

A Tutorial on Principal Component Analysis 9

where Y ∈ Rk represents the original data after projecting it onto the PCA space as shown
in Figure 4, thus (M − k) features or variables are lost from the original data.

Projection

Y∈RkxN

DatayAftery
Projectiony(Y)

Y=WTD
D=

d1 d2

D∈RMxN

dN

DatayMatrixy(D)

PCA
ySpace

(W)

Y=

y1 y2 yN

(Mxk)

Figure 4: Data projection in PCA as in Equation (6).

2.6 Data Reconstruction

The original data can be reconstructed again as in Equation (7).

X̂ = WY + µ =

N∑
i=1

Wyi + µ (7)

where X̂ represents the reconstructed data. The deviation between the original data and the
reconstructed data are called the reconstruction error or residuals as denoted in Equation
(8). The reconstruction error represents the square distance between the original data and
the reconstructed data, and it is inversely proportional to the total variance of the PCA space.
In other words, selecting a large number of PCs, increases the total variance of W and
decreases the error between the reconstructed and the original data. Hence, the robustness
of the PCA is controlled by the number of selected eigenvectors (k) and it is measured by
the sum of the selected eigenvalues, which is called total variance as in Equation (9). For
example, the robustness of the lower dimensional space W = {v1 . . . , vk} is measured by
the ratio between the total variance (λi, i = 1, . . . , k) of W to the total variance (Abdi and
Williams, 2010).

Error = X − X̂ =

N∑
i=1

(xi − x̂i)2 (8)

Robustness of the PCA space =
Total Variance of W

Total Variance
=

∑k
i=1 λi∑M
i=1 λi

(9)

10 author

Table 1 Notation.

Notation Description Notation Description
X Data matrix xi ith sample

N Total number of samples in X M
Dimension of X or

the number of features of X

W
Lower dimensional

or PCA space PCi ith principal component

µ
Mean of all samples

(Total or global mean) Σ Covariance matrix

λ Eigenvalues of Σ V Eigenvectors of Σ

vi The ith eigenvector λi The ith eigenvalue
Y Projected data L Left singular vectors
S Singular values R Right singular vectors
X̂ Reconstructed data k The dimension of W

D
Mean-Centring data

(Data-mean) ωi ith Class

2.7 PCA Algorithms

The first step in the PCA algorithm is to construct a data or feature matrix (X), where each
sample is represented as one column and the number of rows represents the dimension,
i.e. the number of features, of each sample. The detailed steps of calculating the lower
dimensional space of the PCA technique using the covariance and SVD methods are
summarized in Algorithm (1) and Algorithm (2), respectively. MATLAB codes for the two
methods are illustrated in Appendix A.3.

3 Numerical Examples

In this section, two numerical examples were illustrated to calculate the lower dimensional
space. In the first example, the samples were represented by only two features to visualize
it and the PCs were calculated using the two methods, i.e. covariance matrix and SVD
methods. Moreover, in this example, we show how the eigenvalues and eigenvectors that
were calculated using the two methods were equal. Furthermore, the example explains how
the data were projected and reconstructed again. In the second example, each sample was
represented by four features to show how the steps of PCA were affected by changing
the dimension. Moreover, in this example, the influences of a constant variable, i.e. zero
variance, were explained. MATLAB codes for all experiments are introduced in Appendix
A.1.

A Tutorial on Principal Component Analysis 11

Algorithm 1 : Calculating PCs using Covariance Matrix Method.

1: Given a data matrix (X = [x1, x2, . . . , xN]), where N represents the total number of
samples and xi represents the ith sample.

2: Compute the mean of all samples as follows:

µ =
1

N

N∑
i=1

xi (10)

3: Subtract the mean from all samples as follows:

D = {d1, d2, . . . , dN} =

N∑
i=1

xi − µ (11)

4: Compute the covariance matrix as follows:

Σ =
1

N − 1
D ×DT (12)

5: Compute the eigenvectors V and eigenvalues λ of the covariance matrix (Σ).
6: Sort eigenvectors according to their corresponding eigenvalues.
7: Select the eigenvectors that have the largest eigenvaluesW = {v1, . . . , vk}. The selected

eigenvectors (W) represent the projection space of PCA.
8: All samples are projected on the lower dimensional space of PCA (W) as follows,
Y = WTD.

Algorithm 2 : Calculating PCs using SVD Method.

1: Given a data matrix (X = [x1, x2, . . . , xN]), where N represents the total number of
samples and xi(M × 1) represents the ith sample.

2: Compute the mean of all samples as in Equation (10).
3: Subtract the mean from all samples as in Equation (11).
4: Construct a matrix Z = 1√

N−1D
T , Z(N ×M).

5: Calculate SVD for Z matrix as in Equation (3).
6: The diagonal elements of S represent the square root of the sorted eigenvalues, λ =
diag(S2), while the PCs are represented by the columns of R.

7: Select the eigenvectors that have the largest eigenvalues W = {R1, R2, . . . , Rk} to
construct the PCA space.

8: All samples are projected on the lower dimensional space of PCA (W) as follows,
Y = WTD.

3.1 First Example: 2D-Class Example

In this section, the PCA space was calculated using the covariance matrix and SVD methods.
All samples were represented using two variables or features.

12 author

3.1.1 Calculating Principal Components using Covariance Matrix Method

Given a data matrixX = {x1, x2, . . . , x8}, where xi represents the ith samples as denoted
in Equation (13). Each sample of the matrix was represented by one column that consists of
two features (xi ∈ R2) to visualize it. The total mean (µ) was then calculated as in Equation

(10) and its value was µ =

[
2.63
3.63

]
.

X =

[
1.00 1.00 2.00 0.00 5.00 4.00 5.00 3.00
3.00 2.00 3.00 3.00 4.00 5.00 5.00 4.00

]
(13)

The data were then subtracted from the mean as in Equation (11) and the values of D will
be as follows:

D =

[
−1.63−1.63−0.63−2.63 2.38 1.38 2.38 0.38
−0.63−1.63−0.63−0.63 0.38 1.38 1.38 0.38

]
(14)

The covariance matrix (Σ) were then calculated as in Equation (12). The eigenvalues (λ)
and eigenvectors (V) of the covariance matrix were then calculated. The values of the Σ,
λ, and V are shown below.

Σ =

[
3.70 1.70
1.70 1.13

]
, λ =

[
0.28 0.00
0.00 4.54

]
, and V =

[
0.45 −0.90
−0.90−0.45

]
(15)

From the results, we note that the second eigenvalue (λ2) was more than the first one (λ1).
Moreover, the second eigenvalue represents 4.54

0.28+4.54 ≈ 94.19% of the total eigenvalues,
i.e. total variance, while the first eigenvalue represents 0.28

0.28+4.54 ≈ 5.81%, which reflects
the robustness of the second eigenvector than the first one. Thus, the second eigenvector
(i.e. second column of V) points to the direction of the maximum variance and hence it
represents the first principal component of the PCA space.

Calculating the Projected Data:

The mean-centring data (i.e. data− total mean) were then projected on each eigenvector as
follows, (Yv1 = vT1 D and Yv2 = vT2 D), where Yv1 and Yv2 represent the projection of the
D on the first and second eigenvectors, i.e. v1 and v2, respectively. The values of Yv1 and
Yv1 are shown below.

Yv1 =
[
−0.16 0.73 0.28−0.61 0.72−0.62−0.18−0.17

]
Yv2 =

[
1.73 2.18 0.84 2.63−2.29−1.84 −2.74 −0.50

] (16)

A Tutorial on Principal Component Analysis 13

Calculating the Reconstruction Error:

The reconstruction error between the original data and the reconstructed data using all
eigenvectors or all principal components, i.e. there is no information lost, approximately
tend to zero. In other words, if the original data are projected on all eigenvectors without
neglecting anyone, and then reconstructed again, the error between the original and the
reconstructed data will be zero. But, on the other hand, removing one or more eigenvectors
to construct a lower dimensional space (W ∈ Rk), reduces the dimension of the original
data to k, thus some data are neglected, i.e. when the dimension of the lower dimensional
space is lower than the original dimension, hence, there is a difference between the original
data and the reconstructed data. The reconstruction error or residual depends on the number
of the selected eigenvectors (k) and the robustness of those eigenvectors, which is measured
by their corresponding eigenvalues.

In this example, the reconstruction error was calculated when the original data were
first reconstructed as in Equation (7). Moreover, the original data were projected on
the two calculated eigenvectors separately, i.e. Yv1 = vT1 D and Yv2 = vT2 D. Hence, each
eigenvector represents a separate lower dimensional space. The original data were then
reconstructed using the same eigenvector that was used in the projection as follows, X̂i =
viYvi + µ. The values of the reconstructed data (i.e. X̂1 and X̂2) are as follows:

X̂1 = v1Yv1 + µ =

[
2.55 2.95 2.75 2.35 2.95 2.35 2.55 2.55
3.77 2.97 3.37 4.17 2.98 4.18 3.78 3.78

]
X̂2 = v2Yv2 + µ =

[
1.07 0.67 1.88 0.27 4.68 4.28 5.08 3.08
2.85 2.66 3.25 2.46 4.65 4.45 4.84 3.85

] (17)

The error between the original data and the reconstructed data that were projected on the
first and second eigenvectors are denoted by Ev1 and Ev2, respectively. The values of Ev1

and Ev2 are as follows:

Ev1 = X − X̂1 =

[
−1.55−1.95−0.75−2.35 2.05 1.65 2.45 0.45
−0.77−0.97−0.37−1.17 1.02 0.82 1.22 0.22

]
Ev2 = X − X̂2 =

[
−0.07 0.33 0.12 −0.27 0.32 −0.28−0.08−0.08
0.15 −0.66−0.25 0.54 −0.65 0.55 0.16 0.15

] (18)

From the above results it can be noticed that the error between the original data and the
reconstructed data that were projected on the second eigenvector, Ev2, was much lower
than the reconstructed data that were projected on the first eigenvector, Ev1. Moreover, the
total error between the reconstructed data that were projected on the first eigenvector and

14 author

the original data was 3.00 + 4.75 + 0.7 + 6.91 + 5.26 + 3.4 + 7.5 + 0.25 ≈ 31.77, while
the error using the second eigenvector was equal to 0.03 + 0.54 + 0.08 + 0.37 + 0.52 +
0.38 + 0.03 + 0.03 ≈ 1.98d. Thus, the data lost when the original data were projected on
the second eigenvector were much lower than the first eigenvector. Figure 5 shows the error
Ev1 and Ev2 in green and blue lines. As shown, Ev2 was much lower than Ev1.

1

2

3

4

5

6

1 2 3 4 5 6

x2

µ

x1

First

Principal C
omponent (P

C1)

S
econd

P
rincipal C

om
ponent (P

C
2)

Projection

Data Sample

Projection on PC1

Projection on PC2

(a)

µ PC1

PC2

(b)

Figure 5: A visualized example of the PCA technique, (a) the dotted line represents the
first eigenvector (v1), while the solid line represents the second eigenvector (v2) and the
blue and green lines represent the reconstruction error using PC1 and PC2, respectively;
(b) projection of the data on the principal components, the blue and green stars represent
the projection onto the first and second principal components, respectively.

3.1.2 Calculating Principal Components using SVD Method

In this section, a lower dimensional space of PCA was calculated using SVD method. The
original data (X) that were used in the covariance matrix example were used in this example.
The first three steps in SVD method and covariance matrix methods are common. In the
fourth step in SVD, the original data were transposed as follows, Z = 1

N−1D
T . The values

of Z are as follows:

Z =



−0.61−0.24
−0.61−0.61
−0.24−0.24
−0.99−0.24
0.90 0.14
0.52 0.52
0.90 0.52
0.14 0.14


(19)

dFor example, the error between the first sample ([1 3]T) and the reconstructed sample using v1 and v2 was,
(2.55− 1)2 + (3.77− 3)2 ≈ 3.00 and (1.07− 1)2 + (2.85− 3)2 ≈ 0.03, respectively.

A Tutorial on Principal Component Analysis 15

SVD was then used to calculate L, S, and R as in Equation (3) and their values are as
follows:

L =


−0.31 0, 12 −0, 07 −0, 60 0, 58 0, 15 0, 41 0, 04
−0.39 −0, 52 −0, 24 0, 20 −0, 29 0, 53 0, 31 0, 14
−0.15 −0, 20 0, 96 −0, 01 −0, 01 0, 08 0, 07 0, 02
−0.47 0, 43 0, 02 0, 69 0, 32 −0, 05 0.12 −0, 01
0.41 −0, 51 −0, 04 0, 31 0, 68 0, 08 −0, 09 0, 02
0.33 0.44 0, 08 0, 02 0, 02 0, 82 −0, 15 −0, 05
0, 49 0, 12 0, 05 0, 17 −0, 15 −0, 12 0, 83 −0, 03
0, 09 0, 12 0, 02 0, 00 0, 01 −0, 05 −0, 04 0, 99

 , S =


2.13 0
0 0.53
0 0
0 0
0 0
0 0
0 0
0 0

 ,R =
[
0.90 −0.45
0.45 0.90

]
(20)

From the above results, we note that the first singular value (s1) was more than the second
one, thus, the first column of R represents the first principal component, and it was in
the same direction of the second column of V that was calculated using the covariance
matrix method. Moreover, the square roots of the eigenvalues that were calculated using
the covariance matrix method were equal to the singular values of SVD. As a result, the
eigenvalues and eigenvectors of the covariance matrix and SVD methods were the same.

Figure 5 shows a comparison between the two principal components or eigenvectors. The
samples of the original data are represented by red stars (see Figure 5 (a)), each sample is
represented by two features only (xi ∈ R2) to be visualized. In other words, each sample
is represented as a point in the two-dimensional space. Hence, there are two eigenvectors
(v1 and v2) are calculated using SVD or solving covariance matrix. The solid line represents
the second eigenvector (v2), i.e. first principal component, while the dotted line represents
the first eigenvector (v1), i.e. second principal component. Figure 5 (b) shows the projection
of the original data on the two principal components.

3.1.3 Classification Example

PCA was used to remove the redundant data or noise that have a good impact on the
classification problem. Hence, PCA was used commonly as a feature extraction method. In
this section, a comparison between the two eigenvectors was performed to show which one
was suitable to construct a sub-space to discriminate between different classes.

Assume that, the original data consists two classes. The first class (ω1 = {x1, x2, x3, x4})
consists of the first four observations or samples, while the other four samples represent
the second class (ω2 = {x5, x6, x7, x8}). As shown in Figure 6 (a), more important data or
information that were used to discriminate between the two classes were lost and discarded
when the data were projected on the second principal component. On the other hand, the
important information of the original data were preserved when the data were projected
on the first principal component, hence, the two classes can be discriminated as shown
in Figure 6 (b). These findings may help to understand that, the robust eigenvectors were
preserved the important and discriminative information that were used to classify between
different classes.

16 author

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Projected Data

P
 (

P
ro

je
ct

ed
 D

at
a)

Class 1
Class 2

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Projected Data

P
 (

P
ro

je
ct

ed
 D

at
a)

Class 1
Class 2

(b)

Figure 6: Probability density function of the projected data of the first example, (a) the
projected data on PC2, (b) the projected data on PC1.

3.2 Multi-Class Example

In this example, each sample was represented by four variables. In this experiment, the
second variable was constant for all observations as shown below.

X =


1.00 1.00 2.00 0.00 7.00 6.00 7.00 8.00
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
5.00 6.00 5.00 9.00 1.00 2.00 1.00 4.00
3.00 2.00 3.00 3.00 4.00 5.00 5.00 4.00

 (21)

The covariance matrix of the given data was calculated and its values are shown below.

Σ =


10.86 0−7.57 2.86

0 0 0 0
−7.57 0 7.55 −2.23
2.86 0−2.23 1.13

 (22)

As shown from the results above, the values of second row and column were zeros, which
reflects that the variance of the second variable was zeros because the second variable was
constant.

The eigenvalues and eigenvectors of the covariance matrix of the above data are shown
below.

λ =


17.75 0.00 0.00 0.00
0.00 1.46 0.00 0.00
0.00 0.00 0.33 0.00
0.00 0.00 0.00 0.00

 V =


0.76 0.62−0.20 0.00
0.00 0.00 0.00 1.00
−0.61 0.79 0.10 0.00
0.21 0.05 0.98 0.00

 (23)

A Tutorial on Principal Component Analysis 17

From these results, many notices can be seen. First, the first eigenvector represents the
first principal component because it was equal to 17.75

17.75+1.46+0.33+0 ≈ 90.84% of the total
variance of the data. Second, the first three eigenvectors represent 100% of the total variance
of the total data and the fourth eigenvector was redundant. Third, the second variable, i.e.
second row, will be neglected completely when the data were projected on any of the best
three eigenvectors, i.e. the first three eigenvectors. Fourth, as denoted in Equation (24),
the projected data on the fourth eigenvector preserved only the second variable and all
the other original data were lost, and the reconstruction error was ≈ 136.75, while the
reconstruction error was ≈ 12.53 , 126.54 , 134.43 when the data were projected on the
first three eigenvectors, respectively, as shown in Figure 7.

Yv1 =
[
−2.95−3.78−2.19 −6.16 4.28 3.12 4.49 3.20

]
Yv2 =

[
−1.20−0.46−0.58 1.32−0.58−0.39−0.54 2.39

]
Yv3 =

[
0.06−0.82 −0.14 0.64 −0.52 0.75 0.45−0.43

]
Yv4 =

[
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

] (24)

1 2 3 4
0

20

40

60

80

100

120

140

Index of the Eigenvectors

R
ec

on
st

ru
ct

io
n

E
rr

or

Figure 7: Reconstruction error of the four eigenvectors in the multi-class example.

4 Experimental Results and Discussion

In this section, three different experiments were conducted to understand the main idea
of the PCA technique. In the first experiment, the PCA technique was used to identify

18 author

individuals, i.e. PCA was used as a feature extraction method. In the second experiment,
PCA was used to compress a digital image through removing the eigenvectors that represent
the minimum variance from the PCA space and hence some redundant information will
be removed from the original image. In this experiment, different numbers of eigenvectors
were used to preserve the total information of the original image. In the third experiment,
the PCA technique was used to reduce the dimension of the high-dimensional data to be
visualized. Different datasets with different dimensions were used in this experiment. In all
experiments, the principal components were calculated using the covariance matrix method
(see Algorithm (1)). MATLAB codes for all experiments are presented in Appendix A.2.

4.1 Biometric Experiment

The aim of this experiment was to investigate the impact of the number of principal
components on the classification accuracy and the classification CPU time using these
principal components.

4.1.1 Experimental Setup

Three biometric datasets were used in this experiment. The descriptions of the datasets are
as follows:

• Olivetti Research Laboratory, Cambridge (ORLe) dataset (Samaria and Harter, 1994),
which consists of 40 individuals, each has ten grey scale images. The size of each
image was 92× 112.

• Ear dataset imagesf, which consists of 17 individuals, each has six grey scale images
(Carreira, 1995). The images have different dimensions, thus all images were resized
to be 64× 64.

• Yaleg face dataset images, which contains 165 grey scale images in GIF format of 15
individuals (Yang et al., 2004). Each individual has 11 images in different expressions
and configuration: center-light, happy, left-light, with glasses, normal, right-light, sad,
sleepy, surprised, and wink. The size of each image was 320× 243.

Figure 8 shows samples from the face and ear datasets.

In this experiment, the Nearest Neighbor (NN) classifier was used. The nearest neighbor
(minimum distance) classifier (Duda et al., 2012) was used to classify the testing image by

ehttp://www.cam-orl.co.uk
fhttp://faculty.ucmerced.edu/mcarreira-perpinan/software.html
ghttp://vision.ucsd.edu/content/yale-face-database

A Tutorial on Principal Component Analysis 19

comparing its position in the PCA space with positions of the training images. The results of
this experiment were evaluated using two different assessment methods, namely, accuracy
and CPU time. Accuracy or recognition rate represents the percentage of the total number
of predictions that were correct as denoted in Equation (25), while the CPU time in this
experiment was used to measure the classification time. Finally, the experiment environment
includes Window XP operating system, Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz, 4.00
GB RAM, and Matlab (R2013b).

ACC =
Number of Correctly Classified Samples

Total Number of Testing Samples
(25)

Figure 8: Samples of the first individual in: ORL face dataset (top row); Yale face dataset
(middle row); and Ear dataset (bottom row).

4.1.2 Experimental Scenario

In this experiment, different numbers of principal components were used to construct the
PCA space. Hence, the dimension of the PCA space and the projected data were changed
based on the number of selected principal components (k). In this experiment, three sub-
experiments were performed. In the first sub-experiment, ORL face dataset was used. The
training images consist of seven images from each subject (i.e. 7× 40 = 280 images),
while the remaining images were used for testing (i.e. 3× 40 = 120 images). In the second
sub-experiment, the ear dataset was used. The training images consist of three images from
each subject, i.e. 3× 17 = 51 images, and the remaining images were used for testing,
i.e. 3× 17 = 51 images. In the third sub-experiment, Yale face dataset was used. The
training images consist of six images from each subject (i.e. 6× 15 = 90 images), while
the remaining images were used for testing (i.e. 5× 15 = 75 images). In the three sub-
experiments, the training images were selected randomly. Algorithm (3) summarizes the
detailed steps of this experiment. Table 2 lists the results of this experiment.

20 author

Algorithm 3 : Steps of Biometric Experiment.

1: Read the training images (X = {x1, x2, . . . , xN}), where (xi(r × c)) represents the ith

training image, r represents the rows (height) of xi, c represents columns (width) of xi,
and N represents the total number of training images and all training images have the
same dimensions.

2: Convert all images in vector representation Z = {z1, z2, . . . , zN}, where Z(M × 1),
hence each image or sample has M = r × c dimensions.

3: Follow the same steps of the PCA Algorithm (1) to calculate the mean (µ), subtract
the mean from all training images (di = Zi − µ, i = 1, 2, . . . , N), calculate covariance
matrix (Σ), and the eigenvalues (λ(M ×M)) and eigenvectors (V (M ×M)) of Σ.

4: Sort the eigenvectors according to their corresponding eigenvalues.
5: Select the eigenvectors that have the k largest eigenvalues to construct the PCA space

(W = {v1, v2, . . . , vk}).
6: Project the training images after subtracting the mean from each image as follows,
yi = WT di, i = 1, 2, . . . , N .

7: Given an unknown image T (r × c). Convert it to vector form, which is denoted as
follows, I(M × 1).

8: Project the unknown image on the PCA space as follows, U = WT I , then classify the
unknown image by comparing its position with positions of the training images in the
PCA space.

Table 2 A comparison between ORL, Ear, and Yale datasets in terms of accuracy (%), CPU time
(sec), and cumulative variance (%) using different number of eigenvectors (biometric
experiment).

Number of
Eigenvectors

ORL Dataset Ear Dataset Yale Dataset

Acc.
(%)

CPU
Time
(sec)

Cum.
Var.
(%)

Acc.
(%)

CPU
Time
(sec)

Cum.
Var.
(%)

Acc.
(%)

CPU
Time
(sec)

Cum.
Var. (%)

1 13.33 0.074 18.88 15.69 0.027 29.06 26.67 0.045 33.93
5 80.83 0.097 50.17 80.39 0.026 66.10 76.00 0.043 72.24

10 94.17 0.115 62.79 90.20 0.024 83.90 81.33 0.042 85.13
15 95.00 0.148 69.16 94.12 0.028 91.89 81.33 0.039 90.18
20 95.83 0.165 73.55 94.12 0.033 91.89 84.00 0.042 93.36
30 95.83 0.231 79.15 94.12 0.033 98.55 85.33 0.061 96.60
40 95.83 0.288 82.99 94.12 0.046 99.60 85.33 0.064 98.22
50 95.83 0.345 85.75 94.12 0.047 100.00 85.33 0.065 99.12

100 95.83 0.814 93.08 94.12 0.061 100.00 85.33 0.091 100.00
Acc. accuracy; Cum. Cumulative; Var. variance.

4.1.3 Discussion

The results in Table 2 show that the accuracy and CPU time of face and ear biometrics using
different numbers of principal components.

As shown in Table 2, the accuracy of all types of biometrics was proportional to the number
of principal components. However, the accuracy increases until it reaches an extent. As

A Tutorial on Principal Component Analysis 21

shown in the table, the accuracy of the ORL face dataset remains constant when the number
of principal components increased from 20 to 100. Similarly, in the ear and Yale datasets,
the accuracy was constant when the number of principal components was more than 10
and 20, respectively. Further analysis of the table showed that the total variance of the first
100 PCs of all datasets was ranged from 93.08 to 100. Hence, these principal components
have the most important and representative information that were used to discriminate
between different classes. Consequently, increasing the number of principal components
increases the dimension of the projected data, hence increases the classification’s CPU
time. For example, in ORL dataset, the dimensions of the original image were M ×
280, where 280 is the number of training images, while the dimensions of the projected
data ranged from (1× 280) when one principal component was used to (100× 280) when
100 principal components were used. These findings may help to understand that increasing
the number of principal components, increases the dimension of the PCA space, which needs
more CPU time and preserves more important information, hence increases the accuracy.

(a) (b)

Figure 9: Original images (a) 512× 512 8 bit/pixel original image of Lena, (b) 256× 256
8 bit/pixel original image of Cameraman.

4.2 Image Compression Experiment

The aim of this experiment was to use the PCA technique as an image compression technique
to reduce the size of the image by removing some redundant information.

22 author

4.2.1 Experimental Setup

In this experiment, two different images were used, namely Lenna or Lena and Cameraman
image (see Figure 9), which are standard test images that widely used in the field of image
processing and both two images are included in Matlab (Gonzalez et al., 2004)h.

Two different assessment methods were used to evaluate this experiment. The first
assessment method was the Mean Square Error (MSE). MSE is the difference or error
between the original image (I) and the reconstructed image (Î) as shown in Equation (26).
The second assessment method was the compression ratio (CR) or the compression power,
which is the ratio between the size of original image, i.e. the number of unit memory required
to represent the original image, and the size of the compressed image as denoted in Equation
(27). In other words, the compression ratio was used to measure the reduction in the size of
the reconstructed image that produced by a data compression method.

MSE =
1

rc

r∑
i=1

c∑
j=1

(I(i, j)− Î(i, j))2 (26)

CR =
Uncompressed Size
Compressed Size

(27)

where I represents the original image, Î is the reconstructed image, r and c represents the
number of rows and columns of the image, respectively, i.e. r and c represent the dimension
of the image.

4.2.2 Experimental Scenario

The image compression technique is divided into two techniques, namely, lossy and lossless
compression techniques. In the lossless compression technique, all information that was
originally in the original file remains after the file is uncompressed, i.e. all information is
completely restored. On the other hand, in the lossy compression technique, some redundant
information from the original file is lost. In this experiment, PCA was used to reduce
the dimension of the original image and the original data was restored again as shown in
Algorithm (4). As shown in the algorithm, each column of pixels in an image represents an
observation or sample. In this experiment, different numbers of eigenvectors were used to
construct the PCA space that was used to project the original image, i.e. compression, and
reconstruct it again, i.e. decompression, to show how the number of PCs affects the CR
and MSE. Figures 10 and 11 and Table 3 summarizes the results of this experiment.

hhttp://graphics.cs.williams.edu/data/images.xml

A Tutorial on Principal Component Analysis 23

Algorithm 4 : Image Compression-Decompression using PCA

1: Read the original image (I(r × c)), where r and c represent the rows (height) and
columns (width) of the original image. Assume each column represents one observation
or sample as follows, I = [I1, I2, . . . , Ic], where Ii represents the ith column.

2: Follow the same steps of the PCA Algorithm (1) to calculate the mean (µ), subtract
the mean from all columns of the original image (D = I − µ), calculate the covariance
matrix (Σ), eigenvalues (λ), and eigenvectors (V), where the number of eigenvalues and
eigenvectors are equal to the number of rows of the original image.

3: Sort the eigenvectors according to their corresponding eigenvalues.
4: Select the eigenvectors that have the k largest eigenvalues to construct the PCA space

(W = {v1, v2, . . . , vk}).
5: Project the original image after subtracting the mean from each column as follows,
Y = WTD. This step represents the compression step and Y represents the compressed
image.

6: Reconstruct the original image as follows:

Î = WY + µ (28)

Table 3 Compression ratio and mean square error of the compressed images using different
percentages of the eigenvectors (image compression experiment).

Percentage of the
used Eigenvectors

Lena Image Cameraman Image

MSE CR
Cumulative

Variance (%) MSE CR
Cumulative

Variance (%)
10 5.3100 512:51.2 97.35 8.1057 256:25.6 94.56
20 2.9700 512:102.4 99.25 4.9550 256:51.2 98.14
30 1.8900 512:153.6 99.72 3.3324 256:76.8 99.24
40 1.3000 512:204.8 99.87 2.0781 256:102.4 99.73
50 0.9090 512:256 99.94 1.1926 256:128 99.91
60 0.6020 512:307.2 99.97 0.5588 256:153.6 99.98
70 0.3720 512:358.4 99.99 0.1814 256:179.2 100.00
80 0.1935 512:409.6 100.00 0.0445 256:204.8 100.00
90 0.0636 512:460.8 100.00 0.0096 256:230.4 100.00

100 (All) 0.0000 512:512=1 100.00 0.0000 1 100.00

4.2.3 Discussion

Table 3 shows the compression ratio, mean square error, and cumulative variance of the
compressed images using different principal components of the PCA space. From the table,
different notices can be seen. First, the minimum compression ratio (i.e. CR = 1) achieved
when all principal components were used to construct the PCA space and the MSE was
equal to zero, hence, the compression is called lossless compression because all data can be
restored. On the other hand, decreasing the number of principal components means more
data were lost and the compression ratio increased, consequently the MSE increased. For
example, the compression ratio reached to (512 : 1) and (256 : 1) while theMSE was 30.07
and 25.97, respectively, when one principal component, i.e. the first principal component,
was used as a lower dimensional space as shown in Figure 10(a,b). As shown from the figure,

24 author

(a) One principal component, CR=512:1,
and MSE=30.7

(b) One principal component, CR=256:1,
and MSE=25.97

(c) 10% of the principal components,
CR=10:1, and MSE=5.31

(d) 10% of the principal components,
CR=10:1, and MSE=8.1057

(e) 50% of the principal components,
CR=2:1, and MSE=0.909

(f) 50% of the principal components,
CR=2:1, and MSE=1.1926

Figure 10: A comparison between different compressed images of Lena and Cameraman
images using different numbers of the eigenvectors.

A Tutorial on Principal Component Analysis 25

a large amount of data were lost when one principal component was used and the compressed
images much deviated from the original images. On the other hand, increasing the number
of principal components to 10% (see Figure 10(c,d)) and 50% (see Figure 10(e,f)) reduced
the MSE and CR. Further analysis of the robustness of the principal components showed
that the most important information were concentrated in the eigenvectors that have the
highest eigenvalues as shown in Figure 11. Moreover, from the table, the robustness of
the eigenvectors decreased dramatically, and more than 98% of the total variance were
concentrated in only 20% of the total eigenvectors of the PCA space. To conclude, the
MSE and CR were inversely proportional to the number of principal components that
were used to construct the PCA space, i.e. projection space, because decreasing the number
of principal components means more reduction for the original data. Another interesting
finding was that the PCA technique can be used as a lossy/lossless image compression
method.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

The Index of Eigenvectors

R
ob

us
tn

es
s

of
 th

e
E

ig
en

ve
ct

or
s

Lena
Cameraman

Figure 11: The robustness, i.e. total variance (see Equation (9)), of the first 100 eigenvectors
using Lena and Cameraman images.

4.3 Data Visualization Experiment

The aim of this experiment was to use the PCA technique to reduce the dimension of the high
dimensional datasets to be visualized. In this experiment, the PCA space was constructed
using two or three principal components to visualize the datasets in 2D or 3D, respectively.

4.3.1 Experimental Setup

Six standard datasets were used in this experiment as shown in Table 4. Each dataset has
different numbers of attributes, classes, and samples. Table 4 shows the number of classes

26 author

Table 4 Datasets descriptions.

Dataset Number of
Classes

Number of
Features

Number of
Samples

Iris 3 4 150
Iono 2 34 351

Ovarian 2 4000 216
ORL 5 10304 50

Ear64×64 5 4096 30
Yale 5 77760 55

was in the range of [2, 5], the dimensionality was in the range of [4, 77760], and the number
of samples was in the range of [30, 351].

The first dataset was the iris dataset which consists of three different types of flowers,
namely, Setosa, Versicolor, and Versicolor. The second dataset represents the radar data that
consists of two classes, namely, Good and Bad. The third dataset was the Ovarian dataset
that was collected at the Pacific Northwestern National Lab (PNNL) and Johns Hopkins
University. This dataset was considered one of the large-scale or high-dimensional datasets
used to investigate tumors through deep proteomic analysis and it consists of two classes,
namely Normal and Cancer. ORL, ear, and Yale datasets that were described in the first
experiment (see Section 4.1). The images of ear dataset have different dimensions, but in
this experiment, all images were resized to be in the same dimension (64× 64). In this
experiment, five subjects only were used from ORL, ear, and Yale datasets, to be simple in
visualization and faster in a computation.

4.3.2 Experimental Scenario

Due to the high dimensionality of some datasets, it is difficult to visualize data when it
has more than three variables. To solve this problem, one of the dimensionality reduction
methods are used to find the two-dimensional or three-dimensional spaces which are more
similar to the original space. This 2D or 3D subspace is considered a window into the original
space, which is used to visualize the original data. In this experiment, the PCA technique
was used to reduce the number of attributes, features, or dimensions to be visualized. In other
words, PCA searches for a lower dimensional space, i.e. 2D or 3D, and project the original
dataset on that space. Only the first two principal components were used to construct the 2D-
PCA lower dimensional space to visualize the dataset in 2D, while the first three principal
components were used to construct the 3D-PCA lower dimensional space to visualize the
datasets in 3D. Figures 12 and 13 show the 2D and 3D visualizations of all datasets that
were listed in Table 4. Moreover, Table 5 illustrates the total variance, i.e. robustness, of
the PCA space and the MSE between the original and reconstructed data.

A Tutorial on Principal Component Analysis 27

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

First Principal Component (PC1)

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt
 (

P
C

2)

Setosa
Versicolour
Virginica

(a)

−5 −4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

First Principal Component (PC1)

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt
 (

P
C

2)

Bad Radar
Good Radar

(b)

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

First Principal Component (PC1)

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt
 (

P
C

2)

Cancer
Normal

(c)

−1200 −1000 −800 −600 −400 −200 0 200 400 600
−600

−400

−200

0

200

400

600

800

1000

1200

First Principal Component (PC1)

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt
 (

P
C

2)

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

(d)

−200 −100 0 100 200 300 400 500 600 700
−400

−200

0

200

400

600

800

First Principal Component (PC1)

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt
 (

P
C

2)

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

(e)

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000
−2500

−2000

−1500

−1000

−500

0

500

1000

First Principal Component (PC1)

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt
 (

P
C

2)

 Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

(f)

Figure 12: 2D Visualization of the datasets listed in Table 4, (a) Iris dataset, (b) Iono dataset,
(c) Ovarian dataset, (d) ORL dataset, (e) Ear dataset, (f) Yale dataset.

Table 5 A comparison between 2D and 3D visualization in terms of MSE and robustness using
the datasets that were listed in Table 4.

Dataset 2D 3D
Robustness

(in %) MSE
Robustness

(in %) MSE

Iris 97.76 0.12 99.48 0.05
Iono 43.62 0.25 51.09 0.23

Ovarian 98.75 0.04 99.11 0.03
ORL 34.05 24.03 41.64 22.16

Ear64×64 41.17 15.07 50.71 13.73
Yale 48.5 31.86 57.86 28.80

28 author

−4
−2

0
2

4

−2
−1

0
1

2
−1

−0.5

0

0.5

1

First Principal Component (PC1)
Second Principal Component (PC2)

T
hi

rd
 P

rin
ci

pa
l C

om
po

ne
nt

 (
P

C
3)

Setosa
Versicolour
Virginica

(a)

−4
−2

0
2

4
6

−4
−2

0
2

4
−4

−2

0

2

4

First Principal Component (PC1)Second Principal Component (PC2)

T
hi

rd
 P

rin
ci

pa
l C

om
po

ne
nt

 (
P

C
3)

Bad Radar
Good Radar

(b)

−2
−1.5

−1
−0.5

−0.5

0

0.5

1
−0.2

−0.1

0

0.1

0.2

0.3

First Principal Component (PC1)
Second Principal Component (PC2)

T
hi

rd
 P

rin
ci

pa
l C

om
po

ne
nt

 (
P

C
3)

Cancer
Normal

(c)

−2000
−1000

0
1000

−1000

0

1000

2000
−1000

−500

0

500

1000

First Principal Component (PC1)Second Principal Component (PC2)

T
hi

rd
 P

rin
ci

pa
l C

om
po

ne
nt

 (
P

C
3)

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

(d)

−200
0

200
400

600
800

−500

0

500

1000
−600

−400

−200

0

200

400

First Principal Component (PC1)
Second Principal Component (PC2)

T
hi

rd
 P

rin
ci

pa
l C

om
po

ne
nt

 (
P

C
3)

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

(e)

−3000
−2000

−1000
0

1000
2000

−3000
−2000

−1000
0

1000
−2000

−1000

0

1000

2000

First Principal Component (PC1)
Second Principal Component (PC2)

T
hi

rd
 P

rin
ci

pa
l C

om
po

ne
nt

 (
P

C
3)

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

(f)

Figure 13: 3D Visualization of the datasets that were listed in Table 4, (a) Iris dataset, (b)
Iono dataset, (c) Ovarian dataset, (d) ORL dataset, (e) Ear dataset, (f) Yale dataset.

4.3.3 Discussion

As shown in Figure 12, all datasets listed in Table 4 were visualized in 2D. Table 4 shows the
robustness (see Equation 9) of the calculated 2D-PCA space. As shown from the table, the
robustness was ranged from 34.05% to 98.75%. These variations depend on the dimension
of the datasets and the variances of the original datasets’ variables. For example, the Ovarian
dataset could be represented only by two principal components, i.e. two variables, that have
98.75% of the total variance, although it has originally 4000 variables, which reflects that the
amount of important information which were preserved in the 2D-PCA space. Moreover,
from the table, we note that the MSE were ranged from 0.04 to 31.86, which reflects
that small amount information were lost by projecting the datasets on the 2D-PCA space.
Further analysis showed that the MSE was inversely proportional to the robustness of the

A Tutorial on Principal Component Analysis 29

2D-space, e.g. the minimum MSE achieved when the robustness reached 98.75% in the
Ovarian dataset which represents the maximum robustness.

Figure 13 shows the 3D visualizations of the datasets that were listed in Table 4. In this
scenario, the robustness was higher than in 2D scenario, due to the amount of information
stored in 3D-PCA space were more than in 2D-PCA space. Therefore, the MSE achieved
was lower than in 2D scenario, which reflects that more data were preserved and the
visualization in 3D-PCA space was more representative.

From these findings, it was possible to conclude that the PCA technique was feasible to
reduce the dimension of the high dimensional datasets to be visualized in 2D or 3D.

5 Conclusions

Due to the problems of high dimensional datasets, dimensionality reduction techniques,
e.g. PCA, are important for many applications. Such techniques should achieve the
dimensionality reduction by projecting the data on the space which represents the direction
of the maximum variance of the given data. This paper explains visually the steps of
calculating the principal components using two different methods, i.e. covariance matrix and
SVD, and how to select the principal components to construct the PCA space. In addition, a
number of numerical examples were given and graphically illustrated to explain how the PCs
were calculated and how the PCA space was constructed. In the numerical examples, the
mathematical interpretation of the robustness and the selection of the PCs, projecting data,
reconstructing data, and measuring the deviation between the original and reconstructed
data were discussed. Moreover, using standard datasets, a number of experiments were
conducted to (1) Understand the main idea of the PCA and how it is used in different
applications, (2) Investigate and explain the relation between the number of PCs and the
robustness of the PCA space.

References

Larose, D.T. (2014) ’Discovering knowledge in data: an introduction to data mining’, John
Wiley Sons, Second Edition.

Bramer, M. (2013) ’Principles of Data Mining’, Springer, Second Edition.

Saeys, Y., Inza, I., & Larrañaga, P. (2007) ’A review of feature selection techniques in
bioinformatics’, bioinformatics, Vol. 23, No. 19, pp. 2507–2517.

30 author

Venna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S. (2010) ’Information retrieval
perspective to nonlinear dimensionality reduction for data visualization’, The Journal of
Machine Learning Research, Vol. 11, pp. 451–490.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012) ’Pattern classification’, John Wiley & Sons,
Second Edition.

Chiang, L. H., Russell, E. L., & Braatz, R. D. (2000) ’Fault diagnosis in chemical processes
using Fisher discriminant analysis, discriminant partial least squares, and principal
component analysis’, Chemometrics and intelligent laboratory systems, Vol. 50, No. 2,
pp. 243–252.

Tharwat, A., Ibrahim, A., Hassanien, A. E., & Schaefer, G. (2015) ’Ear recognition using
block-based principal component analysis and decision fusion’, in Proceedings of Pattern
Recognition and Machine Intelligence, Vol. 9124, pp. 246–254.

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000) ’A global geometric framework
for nonlinear dimensionality reduction’, Science, Vol. 290, No. 5500, pp. 2319–2323.

Kirby, M. (2000) ’Geometric data analysis: an empirical approach to dimensionality
reduction and the study of patterns’, John Wiley & Sons, First Edition.

Lu, J., Plataniotis, K. N., & Venetsanopoulos, A. N. (2003) ’Face recognition using LDA-
based algorithms’, IEEE Transactions on Neural Networks, Vol. 14, No. 1, pp. 195–200.

Cui, J. R. (2012) ’Multispectral palmprint recognition using Image-Based Linear
Discriminant Analysis’, International Journal of Biometrics, Vol. 4, No. 2, pp. 106–115.

Tharwat, A., Ibrahim, A., & Ali, H. A. (2012) ’Personal identification using ear images
based on fast and accurate principal component analysis’, In proceedings 8th International
Conference on Informatics and Systems (INFOS), Vol. 56, pp. 59–65.

Wu, M. C., Zhang, L., Wang, Z., Christiani, D. C., & Lin, X. (2009) ’Sparse linear
discriminant analysis for simultaneous testing for the significance of a gene set/pathway
and gene selection’, Bioinformatics, Vol. 25, No. 9, pp. 1145–1151.

Hastie, T., & Tibshirani, R. (1996) ’Discriminant analysis by Gaussian mixtures’, Journal
of the Royal Statistical Society Series B (Methodological), pp. 155–176.

Hinton, G. E., & Salakhutdinov, R. R. (2006) ’Reducing the dimensionality of data with
neural networks’ Science, Vol. 313, No. 5786, pp. 504–507.

Scholkopft, B., & Mullert, K. R. (1999) ’Fisher discriminant analysis with kernels’, Neural
networks for signal processing IX, Vol. 1, No. 1, pp. 23–25.

Müller, W., Nocke, T., & Schumann, H. (2006, January) ’Enhancing the visualization
process with principal component analysis to support the exploration of trends’, In
Proceedings of the 2006 Asia-Pacific Symposium on Information Visualisation- Australian
Computer Society, Inc., Vol. 60, pp. 121-130.

Barshan, E., Ghodsi, A., Azimifar, Z., & Jahromi, M. Z. (2011) ’Supervised principal
component analysis: Visualization, classification and regression on subspaces and
submanifolds’, Pattern Recognition, Vol. 44, No. 7, pp. 1357–1371.

A Tutorial on Principal Component Analysis 31

Kambhatla, N., & Leen, T. K. (1997) ’Dimension reduction by local principal component
analysis’, Neural Computation, Vol. 9, No. 7, pp. 1493–1516.

Jolliffe, I. (2002) ’Principal component analysis’, John Wiley & Sons.

Thomas, C. G., Harshman, R. A., & Menon, R. S. (2002) ’Noise reduction in BOLD-based
fMRI using component analysis’, Neuroimage, Vol. 17, No. 3, pp. 1521–1537.

Hyvärinen, A., Karhunen, J., & Oja, E. (2004) ’Independent component analysis’, Vol. 46.
John Wiley & Sons.

Gaber, T., Tharwat, A., Snasel, V., & Hassanien, A. E. (2015) ’Plant Identification:
Two Dimensional-Based Vs. One Dimensional-Based Feature Extraction Methods’, In
Proceedings of 10th International Conference on Soft Computing Models in Industrial
and Environmental Applications, Vol. 368, pp. 375–385.

Roweis, S. T., & Saul, L. K. (2000) ’Nonlinear dimensionality reduction by locally linear
embedding’, Science, Vol. 290, No. 5500, pp. 2323–2326.

Dash, M., Liu, H., & Yao, J. (1997, November) ’Dimensionality reduction of unsupervised
data’, Proceedings of 9th IEEE International Conference on Tools with Artificial
Intelligence, pp. 532–539.

Belkin, M., & Niyogi, P. (2003) ’Laplacian eigenmaps for dimensionality reduction and
data representation’, Neural computation, Vol. 15, No. 6, pp. 1373–1396.

Turk, M., & Pentland, A. P. (1991, June) ’Face recognition using eigenfaces’,Proceedings
of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR’91., pp. 586–591.

Turk, M., & Pentland, A. (1991) ’Eigenfaces for recognition’, Journal of cognitive
neuroscience, Vol. 3, No. 1, pp. 71–86.

Wold, S., Esbensen, K., & Geladi, P. (1987) ’Principal component analysis’, Chemometrics
and intelligent laboratory systems, Vol. 2 , No. 1, pp. 37–52.

Shlens, J. (2014) ’A tutorial on principal component analysis’, Systems Neurobiology
Laboratory, Salk Institute for Biological Studies.

Bishop, C. M. (2006) ’Pattern recognition and machine learning’, springer New York, Vol.
4.

Strang, G., & Aarikka, K. (1986) ’Introduction to applied mathematics’, Wellesley-
Cambridge Press, Massachusetts, Fourth Edition, Vol. 16.

Hyvärinen, L. (1970) ’Principal component analysis’, Mathematical Modeling for Industrial
Processes, pp. 82–104.

Wall, M. E., Rechtsteiner, A., & Rocha, L. M. (2003) ’Singular value decomposition
and principal component analysis’, A practical approach to microarray data analysis,
Springer US., pp. 91–109.

Greenberg, M. D. (2001) ’Differential equations & Linear algebra’, Prentice Hall.

32 author

Alter, O., Brown, P. O., & Botstein, D. (2000) ’Singular value decomposition for genome-
wide expression data processing and modeling’, Proceedings of the National Academy of
Sciences, Vol. 97, No. 18, pp. 10101–10106.

Abdi, H., & Williams, L. J. (2010) ’Principal component analysis’, Wiley Interdisciplinary
Reviews: Computational Statistics, Vol. 2, No. 4, pp. 433–459.

Samaria, F. S., & Harter, A. C. (1994, December) ’Parameterisation of a stochastic model for
human face identification’, Proceedings of the Second IEEE Workshop on In Applications
of Computer Vision, pp. 138–142).

Carreira-Perpinan, M. A. (1995) ’Compression neural networks for feature extraction:
Application to human recognition from ear images’, MS thesis, Faculty of Informatics,
Technical University of Madrid, Spain.

Yang, J., Zhang, D., Frangi, A. F., & Yang, J. Y. (2004) ’Two-dimensional PCA: a new
approach to appearance-based face representation and recognition’, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 26, No. 1, pp. 131–137.

Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2004) ’Digital image processing using
MATLAB’, Pearson Education India.

Asuncion, Arthur, & David Newman. "UCI machine learning repository." (2007).

Appendix A

In this section, a Matlab codes for the numerical examples, experiments, and the two methods
that are used to calculate the PCA are introduced.

A.1: MATLAB Codes for Our Numerical Examples

In this section, the codes the numerical examples in section 3 are introduced.

A.1.1: Covariance Matrix Example

This code follows the steps of the numerical example in section 3.1.1.

1

2 clc
3 clear all;

A Tutorial on Principal Component Analysis 33

4 X = [1 1 2 0 5 4 5 3
5 3 2 3 3 4 5 5 4];
6

7

8 [r,c]=size(X);
9

10 % Compute the mean of the data matrix "The mean of each ...
row" (Equation (10))

11 m=mean(X') ';
12

13 % Subtract the mean from each image [Centering the data] ...
(Equation (11))

14 d=X-repmat(m,1,c);
15

16 % Compute the covariance matrix (co) (Equation (12))
17 co=1 / (c-1)*d*d';
18

19 % Compute the eigen values and eigen vectors of the ...
covariance matrix

20 [eigvector ,eigvl]=eig(co);
21

22 % Project the data on the first eigenvector
23 % The first principal component is the second eigenvector
24 PC1=eigvector (:,2)
25 % Project the data on the PCa
26 Yv2=PC1 '*d
27 % The second principal component is the first eigenvector
28 PC2=eigvector (:,1)
29 % Project the data on the PCa
30 Yv1=PC2 '*d
31

32 % Reconstruct the data from the projected data on PC1
33 Xhat2= PC1*Yv2+repmat(m,1,c)
34 %Reconstruct the data from P2
35 Xhat1= PC2*Yv1+repmat(m,1,c)
36

37 Ev1=X-Xhat1
38 Ev2=X-Xhat2

|

A.1.2: SVD Example

This code follows the steps of the numerical example in section 3.1.2.

1 clc
2 clear all;
3 X = [1 1 2 0 5 4 5 3
4 3 2 3 3 4 5 5 4];
5

6 [r,c]=size(X);
7

34 author

8 % Compute the mean of the data matrix "The mean of each ...
row" (Equation (10))

9 m=mean(X') ';
10

11 % Subtract the mean from each image [Centering the data] ...
(equation (11))

12 d=X-repmat(m,1,c);
13

14 % Construct the matrix Z
15 Z = d' / sqrt(c-1);
16

17 % Calculate SVD
18 [L,S,R] = svd(Z);
19

20 % Calculate the eigenvalues and eigenvectors
21 S = diag(S);
22 EigValues = S .* S;
23 EigenVectors=R;

|

A.2: MATLAB Codes for Our Experiments

In this section, the code of the three experiments are introduced.

A.2.1: Biometric Experiment

This code for the first experiment (Biometric experiment).

1 clc
2 clear all
3

4 % The total number of samples in each class is denoted ...
by NSamples

5 NSamples =10;
6 % The number of classes
7 NClasses =40;
8

9 %Read the data
10 counter =1;
11 for i=1: NClasses
12 Fold=['s' int2str(i)];
13 for j=1: NSamples
14 FiN=[Fold '\' int2str(j) '.pgm'];
15

16 % Read the image file
17 I=imread(FiN);
18

19 % Resize the image to reduce the computational time

A Tutorial on Principal Component Analysis 35

20 I=imresize(I,[50 ,50]);
21

22 % Each image is represented by one column
23 data(counter ,:)=I(:);
24

25 % Y is the class label matrix
26 Y(counter ,1)=i;
27 counter=counter +1;
28 end
29 end
30

31 % Divide the samples into training and testing samples
32 % The number of training samples is denoted by ...

NTrainingSamples
33 NTrainingSamples =5;
34

35 counter =1;
36 Training =[]; Testing =[]; TrLabels =[]; TestLabels =[];
37 for i=1: NClasses
38 for j=1: NTrainingSamples
39 Training(size(Training ,1)+1,:)=data(counter ,:) ;
40 TrLabels(size(TrLabels ,1)+1,1)=Y(counter ,1);
41 counter=counter +1;
42 end
43 for j=NTrainingSamples +1: NSamples
44 Testing(size(Testing ,1)+1,:)=data(counter ,:) ;
45 TestLabels(size(TestLabels ,1)+1,:)=Y(counter ,1);
46 counter=counter +1;
47 end
48 end
49 clear data Y I;
50 tic
51 % Calculate the PCA space , eigenvalues , and eigenvectors
52 data=Training ';
53

54 [r,c]=size(data);
55 % Compute the mean of the data matrix "The mean of each ...

row" (Equation (10))
56 m=mean(data ') ';
57 % Subtract the mean from each image (Equation (11))
58 d=data -repmat(m,1,c);
59

60 % Compute the covariance matrix (co) (Equation (11))
61 co=(1/c-1)*d*d';
62

63 % Compute the eigen values and eigen vectors of the ...
covariance matrix

64 [eigvector ,eigvl]=eig(co);
65

66 % Sort the eigen vectors according to the eigen values
67 eigvalue = diag(eigvl);
68 [junk , index] = sort(-eigvalue);
69 eigvalue = eigvalue(index);
70 eigvector = abs(eigvector(:, index));
71

72 % EigenvectorPer is the percentage of the selected ...
eigenvectors

73 EigenvectorPer =50;
74 PCASpace=eigvector (:,1: EigenvectorPer*size(eigvector ,2) /100);
75

36 author

76 % Project the training data on the PCA space.
77 TriningSpace=PCASpace '*d;
78 clear data;
79

80 % Calculate the lower and upper bounds of the class labels
81 % For example , the first testing sample is correctly ...

classified when its
82 % label between 1 and 5, because the first testing ...

sample belongs to the
83 % first class and the number of samples of the first ...

class is 5. In other
84 % words , the first five samples of the training data ...

belong to the first
85 % class.
86 counter =1;
87 for i=1: NSamples*NClasses -size(Training ,1) % number of ...

the tseting images
88 l(i,:) =1+(counter -1)*(size(Training ,1)/NClasses);
89 h(i,:)=counter *(size(Training ,1)/NClasses);
90 if(rem(i,(NSamples -(size(Training ,1)/NClasses)))==0)
91 counter=counter +1;
92 end
93 end
94

95 % Classification phase
96 % Each image is projected on the PCA space and then ...

classified using
97 % minimum distance classifier.
98

99 CorrectyClassified_counter =0;
100 for i=1: size(Testing ,1)
101 TestingSample=Testing(i,:);
102 TestingSample=TestingSample -m';
103 TestingSample=PCASpace '* TestingSample ';
104

105 % Apply minimum distance classifier
106 rr(i)=mindist_classifier_type_final(TestingSample ,...
107 TriningSpace ,'Euclidean ');
108 if(rr(i)≥l(i,1) && rr(i)≤h(i,1))
109 CorrectyClassified_counter=CorrectyClassified_counter +1;
110 end
111 end
112

113 % The accuracy of the testing samples
114 CorrectyClassified_counter *100/ size(Testing ,1)

|

A.2.2: Image Compression Experiment

This code for the second experiment (image compression experiment).

1

A Tutorial on Principal Component Analysis 37

2 clc
3 clear all;
4

5 data = imread('cameraman.png ');
6

7 %If the image is RGB convert it to grayscale as follow
8 % data=rgb2gray(data);
9

10 %Each column represents on sample
11 [r,c]=size(data);
12

13 % Compute the mean of the data matrix "The mean of each ...
row" (Equation (10))

14 m=mean(data ') ';
15

16 % Subtract the mean from each image [Centering the data] ...
(Equation (11))

17 d=double(data)-repmat(m,1,c);
18

19 % Compute the covariance matrix (co) (Equation (12))
20 co=1 / (c-1)*d*d';
21

22 % Compute the eigen values and eigen vectors of the ...
covariance matrix (Equation (2))

23 [eigvec ,eigvl]=eig(co);
24

25 % Sort the eigenvectors according to the eigenvalues ...
(Descending order)

26 eigvalue = diag(eigvl);
27 [junk , index] = sort(-eigvalue);
28 eigvalue = eigvalue(index);
29 eigvec = eigvec(:, index);
30

31

32

33 for i=10:10:100
34 % Project the original data (the image) onto the PCA ...

space
35 % The whole PCA space or part of it can be used as ...

folows as in
36 % Equation (6)
37 Compressed_Image=eigvec (:,1:(i/100)*size(eigvec ,2))'*...
38 double(d);
39

40 % Reconstruct the image as in Equation (7)
41 ReConstructed_Image= ...

(eigvec (:,1:(i/100)*size(eigvec ,2)))...
42 *Compressed_Image;
43 ReConstructed_Image=ReConstructed_Image+repmat(m,1,c);
44

45 % Show the reconstructed image
46 imshow(uint8(ReConstructed_Image))
47 pause(0.5)
48

49 % Calculate the error as in Equation (8)
50 MSE =(1/(size(data ,1)*size(data ,2)))*...
51 sum(sum(abs(ReConstructed_Image -double(data))))
52

53 % Calculate the Compression Ratio (CR)= number of ...
elments of the

38 author

54 % compressed image / number of elements of the ...
original image

55 CR=numel(Compressed_Image)/numel(data)
56 end

|

A.2.3: Data Visualization Experiment

This code for the third experiment (data visualization experiment).

1 clc
2 clear all;
3

4 load iris_dataset;
5 data=irisInputs; % Data matrix , four attributes and 150 ...

samples
6 [r,c]=size(data);
7

8 % Compute the mean of the data matrix "The mean of each ...
row" (Equation (10))

9 m=mean(data ') ';
10

11 % Subtract the mean from each image [Centering the data] ...
(Equation (11))

12 d=data -repmat(m,1,c);
13

14 % Compute the covariance matrix (co) (Equation (12))
15 co=1 / (c-1)*d*d';
16

17 % Compute the eigen values and eigen vectors of the ...
covariance matrix (Equation (2))

18 [eigvector ,eigvl]=eig(co);
19

20 % Project the original data on only two eigenvectors
21 Data_2D=eigvector (: ,1:2) '*d;
22

23 % Project the original data on only three eigenvectors
24 Data_3D=eigvector (: ,1:3) '*d;
25

26 % Reconstruction of the original data
27 % Two dimensional case
28 Res_2D= (eigvector (: ,1:2))*Data_2D;
29 TotRes_2D=Res_2D+repmat(m,1,c);
30

31 % Two dimensional case
32 Res_3D= (eigvector (: ,1:3))*Data_3D;
33 TotRes_3D=Res_3D+repmat(m,1,c);
34

35 % Calculate the error between the original data and the ...
reconstructed data

36 % (Equation (8))
37 % (Two dimensional case)

A Tutorial on Principal Component Analysis 39

38 MSE =(1/(size(data ,1)*size(data ,2)))*...
39 sum(sum(abs(TotRes_2D -double(data))))
40 % (Three dimensional case)
41 MSE =(1/(size(data ,1)*size(data ,2)))*...
42 sum(sum(abs(TotRes_3D -double(data))))
43

44 % Calculate the Robustness of the PCA space (Equation (9))
45 % (Two Dimensional case)
46 SumEigvale=diag(eigvl);
47 Weight_2D=sum(SumEigvale (1:2))/sum(SumEigvale)
48 % (Three Dimensional case)
49 Weight_3D=sum(SumEigvale (1:3))/sum(SumEigvale)
50

51 % Visualize the data in two dimensional space
52 % The first class (Setosa) in red , the second class ...

(Versicolour) in blue , and the third class ...
(Virginica) in

53 % green
54 figure (1),
55 plot(Data_2D (1 ,1:50),Data_2D (2 ,1:50),'rd'...
56 ,'MarkerFaceColor ','r'); hold on
57 plot(Data_2D (1 ,51:100),Data_2D (2 ,51:100),'bd'...
58 ,'MarkerFaceColor ','b'); hold on
59 plot(Data_2D (1 ,101:150) ,Data_2D (2 ,101:150) ,'gd'...
60 ,'MarkerFaceColor ','g')
61 xlabel('First Principal Component (PC1)')
62 ylabel('Second Principal Component (PC2)')
63 legend('Setosa ','Versicolour ','Virginica ')
64

65 % Visualize the data in three dimensional space
66 % The first class (Setosa) in red , the second class ...

(Versicolour) in blue , and the third class ...
(Virginica) in

67 % green
68 figure (2),
69 scatter3(Data_3D (1 ,1:50),Data_3D (2 ,1:50),...
70 Data_3D (3 ,1:50),'rd','MarkerFaceColor ','r'); hold on
71 scatter3(Data_3D (1 ,51:100),Data_3D (2 ,51:100),...
72 Data_3D (3 ,51:100),'bd','MarkerFaceColor ','b'); hold on
73 scatter3(Data_3D (1 ,101:150) ,Data_3D (2 ,101:150) ,...
74 Data_3D (3 ,101:150) ,'gd','MarkerFaceColor ','g')
75 xlabel('First Principal Component (PC1)')
76 ylabel('Second Principal Component (PC2)')
77 zlabel('Third Principal Component (PC3)')
78 legend('Setosa ','Versicolour ','Virginica ')

|

A.3: MATLAB Code for Calculating PCA

In this section, the codes for calculating the PCA space using covariance matrix and SVD
methods are introduced.

40 author

A.3.1: Covariance Matrix Method

This code is used to calculate the PCA space using covariance matrix method and it follows
the steps of Algorithm (1).

1 function [Newdata , PCASpace , EigValues]= PCACov(data)
2

3 [r,c]=size(data);
4

5 % Compute the mean of the data matrix "The mean of each ...
row" (Equation (10))

6 m=mean(data ') ';
7

8 % Subtract the mean from each image [Centering the data] ...
(Equation (11))

9 d=data -repmat(m,1,c);
10

11 % Compute the covariance matrix (co) (Equation (12))
12 co=1 / (c-1)*d*d';
13

14 % Compute the eigen values and eigen vectors of the ...
covariance matrix

15 [eigvector ,EigValues]=eig(co);
16

17 PCASpace=eigvector
18

19 % Project the original data on the PCA space
20 Newdata=PCASpace '*data;

|

A.3.2: SVD Method

This code is used to calculate the PCA space using SVD method and it follows the steps of
Algorithm (2).

1 function [Newdata ,PCASpace ,EigValues]= PCASVD(data)
2 % PCASVD: This function constructs the PCA space using ...

SVD method
3 % data - MxN matrix of input data
4 % M is the dimensions or features
5 % N is the number of samples or observations
6 % Newdata is the original data after projection onto the ...

PCA space
7 % PCASpace is the space of PCA (i.e. eigenvectors)
8 % EigValues represent the eigenvalues
9

10 [r,c]=size(data);
11

A Tutorial on Principal Component Analysis 41

12 % Compute the mean of the data matrix "The mean of each ...
row" (Equation (10))

13 m=mean(data ') ';
14

15 % Subtract the mean from each image [Centering the data] ...
(equation (11))

16 d=data -repmat(m,1,c);
17

18 % Construct the matrix Z
19 Z = d' / sqrt(c-1);
20

21 % Calculate SVD
22 [L,S,R] = svd(Z);
23

24 % Calculate the eigenvalues and eigenvectors
25 S = diag(S);
26 EigValues = S .* S;
27 PCASpace=R;
28

29 % Project the original data on the PCA space
30 Newdata=PCASpace '*d;

|

