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4.3 Least Squares Approximations

It often happens that Ax D b has no solution. The usual reason is: too many equations.
The matrix has more rows than columns. There are more equations than unknowns
(m is greater than n). The n columns span a small part of m-dimensional space. Unless all
measurements are perfect, b is outside that column space. Elimination reaches an
impossible equation and stops. But we can’t stop just because measurements include noise.

To repeat: We cannot always get the error e D b � Ax down to zero. When e is zero,
x is an exact solution to Ax D b. When the length of e is as small as possible, bx is a
least squares solution. Our goal in this section is to compute bx and use it. These are real
problems and they need an answer.

The previous section emphasized p (the projection). This section emphasizes bx (the
least squares solution). They are connected by p D Abx. The fundamental equation is still
ATAbx D ATb. Here is a short unofficial way to reach this equation:

When Ax D b has no solution, multiply by AT and solve ATAbx D ATb:

Example 1 A crucial application of least squares is fitting a straight line to m points.
Start with three points: Find the closest line to the points .0; 6/; .1; 0/, and .2; 0/.

No straight line b D C C Dt goes through those three points. We are asking for two
numbers C and D that satisfy three equations. Here are the equations at t D 0; 1; 2 to
match the given values b D 6; 0; 0:

t D 0 The first point is on the line b D C CDt if C CD � 0 D 6
t D 1 The second point is on the line b D C CDt if C CD � 1 D 0
t D 2 The third point is on the line b D C CDt if C CD � 2 D 0:

This 3 by 2 system has no solution: b D .6; 0; 0/ is not a combination of the columns
.1; 1; 1/ and .0; 1; 2/. Read off A;x; and b from those equations:

A D

241 0

1 1

1 2

35 x D

�
C

D

�
b D

2460
0

35 Ax D b is not solvable.

The same numbers were in Example 3 in the last section. We computed bx D .5;�3/.
Those numbers are the best C and D, so 5 � 3t will be the best line for the 3 points.
We must connect projections to least squares, by explaining why ATAbx D ATb.

In practical problems, there could easily be m D 100 points instead of m D 3. They
don’t exactly match any straight line C CDt . Our numbers 6; 0; 0 exaggerate the error so
you can see e1; e2, and e3 in Figure 4.6.

Minimizing the Error

How do we make the error e D b�Ax as small as possible? This is an important question
with a beautiful answer. The best x (called bx/ can be found by geometry or algebra or
calculus: 90ı angle or project using P or set the derivative of the error to zero.
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By geometry Every Ax lies in the plane of the columns .1; 1; 1/ and .0; 1; 2/. In that
plane, we look for the point closest to b. The nearest point is the projection p.

The best choice for Abx is p. The smallest possible error is e D b � p. The three points at
heights .p1; p2; p3/ do lie on a line, because p is in the column space. In fitting a straight
line, bx gives the best choice for .C;D/.

By algebra Every vector b splits into two parts. The part in the column space is p.
The perpendicular part in the nullspace of AT is e. There is an equation we cannot solve
.Ax D b/. There is an equation Abx D p we do solve (by removing e/:

Ax D b D pC e is impossible; Abx D p is solvable. (1)

The solution to Abx D p leaves the least possible error (which is e):

Squared length for any x kAx � bk2 D kAx � pk2 C kek2: (2)

This is the law c2 D a2Cb2 for a right triangle. The vector Ax�p in the column space is
perpendicular to e in the left nullspace. We reduce Ax � p to zero by choosing x to be bx.
That leaves the smallest possible error e D .e1; e2; e3/.

Notice what “smallest” means. The squared length of Ax � b is minimized:

The least squares solution bx makes E D kAx � bk2 as small as possible.

Figure 4.6: Best line and projection: Two pictures, same problem. The line has heights
p D .5; 2;�1/ with errors e D .1;�2; 1/. The equations ATAbx D ATb give bx D .5;�3/.
The best line is b D 5� 3t and the projection is p D 5a1 � 3a2.

Figure 4.6a shows the closest line. It misses by distances e1; e2; e3 D 1;�2; 1.
Those are vertical distances. The least squares line minimizes E D e2

1 C e
2
2 C e

2
3 .
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Figure 4.6b shows the same problem in 3-dimensional space (bp e space). The vector
b is not in the column space of A. That is why we could not solve Ax D b. No line goes
through the three points. The smallest possible error is the perpendicular vector e. This is
e D b � Abx, the vector of errors .1;�2; 1/ in the three equations. Those are the distances
from the best line. Behind both figures is the fundamental equation ATAbx D ATb.

Notice that the errors 1;�2; 1 add to zero. The error e D .e1; e2; e3/ is perpendicular
to the first column .1; 1; 1/ in A. The dot product gives e1 C e2 C e3 D 0.

By calculus Most functions are minimized by calculus! The graph bottoms out and the
derivative in every direction is zero. Here the error function E to be minimized is a sum of
squares e2

1 C e
2
2 C e

2
3 (the square of the error in each equation):

E D kAx � bk2 D .C CD � 0 � 6/2 C .C CD � 1/2 C .C CD � 2/2: (3)

The unknowns are C and D. With two unknowns there are two derivatives—both zero
at the minimum. They are “partial derivatives” because @E=@C treats D as constant and
@E=@D treats C as constant:

@E=@C D 2.C CD � 0� 6/ C 2.C CD � 1/ C 2.C CD � 2/ D 0

@E=@D D 2.C CD � 0� 6/.0/C 2.C CD � 1/.1/C 2.C CD � 2/.2/ D 0:
@E=@D contains the extra factors 0; 1; 2 from the chain rule. (The last derivative from
.C C 2D/2 was 2 times C C 2D times that extra 2.) In the C derivative the corresponding
factors are 1; 1; 1, because C is always multiplied by 1. It is no accident that 1, 1, 1 and
0, 1, 2 are the columns of A.

Now cancel 2 from every term and collect all C ’s and all D’s:

The C derivative is zero: 3C C 3D D 6

The D derivative is zero: 3C C 5D D 0
This matrix

�
3 3

3 5

�
is ATA (4)

These equations are identical with ATAbx D ATb. The best C and D are the components
of bx. The equations from calculus are the same as the “normal equations” from linear
algebra. These are the key equations of least squares:

The partial derivatives of kAx � bk2 are zero when ATAbx D ATb:

The solution is C D 5 and D D �3. Therefore b D 5 � 3t is the best line—it comes
closest to the three points. At t D 0, 1, 2 this line goes through p D 5, 2, �1.
It could not go through b D 6, 0, 0. The errors are 1, �2, 1. This is the vector e!

The Big Picture

The key figure of this book shows the four subspaces and the true action of a matrix. The
vector x on the left side of Figure 4.3 went to b D Ax on the right side. In that figure x
was split into xr C xn. There were many solutions to Ax D b.
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Figure 4.7: The projection p D Abx is closest to b, so bx minimizes E D kb� Axk2.

In this section the situation is just the opposite. There are no solutions to Ax D b.
Instead of splitting up x we are splitting up b. Figure 4.3 shows the big picture for least
squares. Instead of Ax D b we solve Abx D p. The error e D b� p is unavoidable.

Notice how the nullspace N .A/ is very small—just one point. With independent
columns, the only solution to Ax D 0 is x D 0. Then ATA is invertible. The equation
ATAbx D ATb fully determines the best vector bx. The error has ATe D 0.

Chapter 7 will have the complete picture—all four subspaces included. Every x splits
into xr C xn, and every b splits into pC e. The best solution is bxr in the row space. We
can’t help e and we don’t want xn—this leaves Abx D p.

Fitting a Straight Line

Fitting a line is the clearest application of least squares. It starts with m > 2 points,
hopefully near a straight line. At times t1; : : : ; tm those m points are at heights
b1; : : : ; bm. The best line C C Dt misses the points by vertical distances e1; : : : ; em.
No line is perfect, and the least squares line minimizesE D e2

1 C � � � C e
2
m.

The first example in this section had three points in Figure 4.6. Now we allowm points
(and m can be large). The two components of bx are still C andD.

A line goes through the m points when we exactly solve Ax D b. Generally we can’t
do it. Two unknowns C and D determine a line, so A has only n D 2 columns. To fit the
m points, we are trying to solve m equations (and we only want two!):

Ax D b is

C CDt1 D b1

C CDt2 D b2
:::

C CDtm D bm

with A D

26664
1 t1
1 t2
:::

:::

1 tm

37775 : (5)
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The column space is so thin that almost certainly b is outside of it. When b happens to lie
in the column space, the points happen to lie on a line. In that case b D p. Then Ax D b
is solvable and the errors are e D .0; : : : ; 0/.

The closest line C CDt has heights p1; : : : ; pm with errors e1; : : : ; em.

SolveATAbx D ATb for bx D .C;D/. The errors are ei D bi � C �Dti .

Fitting points by a straight line is so important that we give the two equations ATAbx D
ATb, once and for all. The two columns of A are independent (unless all times ti are the
same). So we turn to least squares and solve ATAbx D ATb.

Dot-product matrix ATA D

�
1 � � � 1

t1 � � � tm

� 2641 t1
:::

:::

1 tm

375 D "
m

P
tiP

ti
P
t2i

#
: (6)

On the right side of the normal equation is the 2 by 1 vector ATb:

ATb D

�
1 � � � 1

t1 � � � tm

� 264 b1

:::

bm

375 D " P
biP
tibi

#
: (7)

In a specific problem, these numbers are given. The best bx D .C;D/ is in equation (9).

The line C CDt minimizes e2
1 C � � � C e

2
m D kAx � bk

2 when ATAbx D ATb:"
m

P
tiP

ti
P
t2i

# �
C

D

�
D

" P
biP
tibi

#
: (8)

The vertical errors at the m points on the line are the components of e D b � p. This
error vector (the residual) b � Abx is perpendicular to the columns of A (geometry). The
error is in the nullspace of AT (linear algebra). The best bx D .C;D/ minimizes the total
error E, the sum of squares:

E.x/ D kAx � bk2 D .C CDt1 � b1/
2 C � � � C .C CDtm � bm/

2:

When calculus sets the derivatives @E=@C and @E=@D to zero, it produces ATAbx D ATb.
Other least squares problems have more than two unknowns. Fitting by the best parabola

has n D 3 coefficients C;D;E (see below). In general we are fitting m data points
by n parameters x1; : : : ; xn. The matrix A has n columns and n < m. The derivatives
of kAx � bk2 give the n equations ATAbx D ATb. The derivative of a square is linear.
This is why the method of least squares is so popular.

Example 2 A has orthogonal columns when the measurement times t i add to zero.
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Suppose b D 1; 2; 4 at times t D �2; 0; 2. Those times add to zero. The columns of A
have zero dot product:

C CD.�2/ D 1

C C D.0/ D 2

C C D.2/ D 4

or Ax D

241 �21 0

1 2

35 �
C

D

�
D

2412
4

35 :
Look at the zeros in ATA:

ATAbx D ATb is
�
3 0

0 8

� �
C

D

�
D

�
7

6

�
:

Main point: Now ATA is diagonal. We can solve separately for C D 7
3

and D D 6
8
. The

zeros in ATA are dot products of perpendicular columns in A. The diagonal matrix ATA,
with entries m D 3 and t 21 C t

2
2 C t

2
3 D 8, is virtually as good as the identity matrix.

Orthogonal columns are so helpful that it is worth moving the time origin to produce
them. To do that, subtract away the average timebt D .t1C � � � C tm/=m. The shifted times
Ti D ti �bt add to

P
Ti D mbt � mbt D 0. With the columns now orthogonal, ATA is

diagonal. Its entries are m and T 2
1 C � � � C T

2
m. The best C and D have direct formulas:

T is t �bt C D
b1 C � � � C bm

m
and D D

b1T1 C � � � C bmTm

T 2
1 C � � � C T

2
m

: (9)

The best line is C CDT or C CD.t �bt /. The time shift that makes ATA diagonal is an
example of the Gram-Schmidt process: orthogonalize the columns in advance.

Fitting by a Parabola

If we throw a ball, it would be crazy to fit the path by a straight line. A parabola b D
C CDt C Et2 allows the ball to go up and come down again .b is the height at time t /.
The actual path is not a perfect parabola, but the whole theory of projectiles starts with that
approximation.

When Galileo dropped a stone from the Leaning Tower of Pisa, it accelerated.
The distance contains a quadratic term 1

2
gt2. (Galileo’s point was that the stone’s mass

is not involved.) Without that t 2 term we could never send a satellite into the right or-
bit. But even with a nonlinear function like t 2, the unknowns C;D;E appear linearly!
Choosing the best parabola is still a problem in linear algebra.

Problem Fit heights b1; : : : ; bm at times t1; : : : ; tm by a parabola C CDt CEt2.

Solution Withm > 3 points, the m equations for an exact fit are generally unsolvable:

C CDt1 C Et
2
1 D b1

:::

C CDtm C Et
2
m D bm

has the m by 3 matrix A D

241 t1 t21:::
:::

:::
1 tm t2m

35 : (10)

Least squares The closest parabola C C Dt C Et 2 chooses bx D .C;D;E/ to
satisfy the three normal equations ATAbx D ATb.
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May I ask you to convert this to a problem of projection? The column space of A has
dimension . The projection of b is p D Abx, which combines the three columns
using the coefficientsC;D;E. The error at the first data point is e1 D b1�C �Dt1�Et

2
1 .

The total squared error is e2
1 C . If you prefer to minimize by calculus, take the

partial derivatives of E with respect to ; ; . These three derivatives will
be zero when bx D .C;D;E/ solves the 3 by 3 system of equations .

Section 8.5 has more least squares applications. The big one is Fourier series—
approximating functions instead of vectors. The function to be minimized changes from a
sum of squared errors e2

1 C � � � C e
2
m to an integral of the squared error.

Example 3 For a parabola b D CCDtCEt 2 to go through the three heights b D 6; 0; 0
when t D 0; 1; 2, the equations are

C CD � 0CE � 02 D 6

C CD � 1CE � 12 D 0

C CD � 2CE � 22 D 0:

(11)

This is Ax D b. We can solve it exactly. Three data points give three equations and a
square matrix. The solution is x D .C;D;E/ D .6;�9; 3/. The parabola through the
three points in Figure 4.8a is b D 6 � 9t C 3t 2.

What does this mean for projection? The matrix has three columns, which span the
whole space R3. The projection matrix is the identity. The projection of b is b. The error
is zero. We didn’t need ATAbx D ATb, because we solved Ax D b. Of course we could
multiply by AT, but there is no reason to do it.

Figure 4.8 also shows a fourth point b4 at time t4. If that falls on the parabola, the new
Ax D b (four equations) is still solvable. When the fourth point is not on the parabola, we
turn to ATAbx D ATb. Will the least squares parabola stay the same, with all the error at
the fourth point? Not likely!

The smallest error vector .e1; e2; e3; e4/ is perpendicular to .1; 1; 1; 1/, the first column
of A. Least squares balances out the four errors, and they add to zero.


..............................................................

...............................................
...............

�

0
1 2

tj

t4

6

˝b4 –

b D 6� 9t C 3t2
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�
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6

0

0
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4
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1
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1

1
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Figure 4.8: From Example 3: An exact fit of the parabola at t D 0; 1; 2 means that p D b
and e D 0. The point b4 off the parabola makes m > n and we need least squares.
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REVIEW OF THE KEY IDEAS

1. The least squares solution bx minimizesE D kAx � bk2. This is the sum of squares
of the errors in the m equations .m > n/.

2. The best bx comes from the normal equations ATAbx D ATb.

3. To fitm points by a line b D C CDt , the normal equations give C and D.

4. The heights of the best line are p D .p1; : : : ; pm/. The vertical distances to the data
points are the errors e D .e1; : : : ; em/.

5. If we try to fit m points by a combination of n < m functions, the m equations
Ax D b are generally unsolvable. The n equations ATAbx D ATb give the least
squares solution—the combination with smallest MSE (mean square error).

WORKED EXAMPLES

4.3 A Start with nine measurements b1 to b9, all zero, at times t D 1; : : : ; 9. The
tenth measurement b10 D 40 is an outlier. Find the best horizontal line y D C to fit
the ten points .1; 0/; .2; 0/; : : : ; .9; 0/; .10; 40/ using three measures for the error E:

(1) Least squares E2 D e2
1 C � � � C e2

10 (then the normal equation for C is linear)

(2) Least maximum error E1 D jemaxj (3) Least sum of errors E1 D je1j C � � � C je10j.

Solution (1) The least squares fit to 0; 0; : : : ; 0; 40 by a horizontal line is C D 4:

A D column of 1’s ATA D 10 ATb D sum of bi D 40. So 10C D 40:

(2) The least maximum error requires C D 20, halfway between 0 and 40.

(3) The least sum requires C D 0 (!!). The sum of errors 9jC j C j40 � C j would increase
if C moves up from zero.

The least sum comes from the median measurement (the median of 0; : : : ; 0; 40 is zero).
Many statisticians feel that the least squares solution is too heavily influenced by outliers
like b10 D 40, and they prefer least sum. But the equations become nonlinear.

Now find the least squares straight line C CDt through those ten points.

ATA D

�
10

P
tiP

ti
P
t2i

�
D

�
10 55

55 385

�
ATb D

� P
biP
tibi

�
D

�
40

400

�
Those come from equation (8). Then ATAbx D ATb gives C D �8 and D D 24=11.

What happens to C and D if you multiply the bi by 3 and then add 30 to get
bnew D .30; 30; : : : ; 150/? Linearity allows us to rescale b D .0; 0; : : : ; 40/. Multiplying
b by 3 will multiply C and D by 3. Adding 30 to all b i will add 30 to C .
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4.3 B Find the parabolaCCDtCEt 2 that comes closest (least squares error) to the val-
ues b D .0; 0; 1; 0; 0/ at the times t D �2;�1; 0; 1; 2. First write down the five equations
Ax D b in three unknowns x D .C;D;E/ for a parabola to go through the five points. No
solution because no such parabola exists. Solve ATAbx D ATb.

I would predict D D 0. Why should the best parabola be symmetric around t D 0?
In ATAbx D ATb, equation 2 for D should uncouple from equations 1 and 3.

Solution The five equations Ax D b have a rectangular “Vandermonde” matrix A:

C C D .�2/ C E .�2/2 D 0

C C D .�1/ C E .�1/2 D 0

C C D .0/ C E .0/2 D 1

C C D .1/ C E .1/2 D 0

C C D .2/ C E .2/2 D 0

A D

266664
1 �2 4

1 �1 1

1 0 0

1 1 1

1 2 4

377775 ATA D

24 5 0 10

0 10 0
10 0 34

35

Those zeros in ATAmean that column 2 of A is orthogonal to columns 1 and 3. We see this
directly in A (the times �2;�1; 0; 1; 2 are symmetric). The best C;D;E in the parabola
C CDt C Et2 come from ATAbx D ATb, and D is uncoupled:24 5 0 10

0 10 0

10 0 34

35 24 C

D

E

35 D
24 1

0

0

35 leads to
C D 34=70

D D 0 as predicted
E D �10=70

Problem Set 4.3

Problems 1–11 use four data points b D .0; 8; 8; 20/ to bring out the key ideas.

1 With b D 0; 8; 8; 20 at t D 0; 1; 3; 4, set up and solve the normal equations
ATAbx D ATb. For the best straight line in Figure 4.9a, find its four heights pi

and four errors ei . What is the minimum value E D e2
1 C e

2
2 C e

2
3 C e

2
4?

2 (Line C C Dt does go through p’s) With b D 0; 8; 8; 20 at times t D 0; 1; 3; 4,
write down the four equations Ax D b (unsolvable). Change the measurements to
p D 1; 5; 13; 17 and find an exact solution to Abx D p.

3 Check that e D b�p D .�1; 3;�5; 3/ is perpendicular to both columns of A. What
is the shortest distance kek from b to the column space of A?

4 (By calculus) Write down E D kAx � bk2 as a sum of four squares—the last one
is .C C 4D � 20/2. Find the derivative equations @E=@C D 0 and @E=@D D 0.
Divide by 2 to obtain the normal equations ATAbx D ATb.

5 Find the height C of the best horizontal line to fit b D .0; 8; 8; 20/. An exact fit
would solve the unsolvable equations C D 0; C D 8; C D 8; C D 20. Find the
4 by 1 matrixA in these equations and solveATAbx D ATb. Draw the horizontal line
at height bx D C and the four errors in e.
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6 Project b D .0; 8; 8; 20/ onto the line through a D .1; 1; 1; 1/. Find bx D aTb=aTa

and the projection p Dbxa. Check that e D b�p is perpendicular to a, and find the
shortest distance kek from b to the line through a.

7 Find the closest line b D Dt , through the origin, to the same four points. An exact
fit would solve D � 0 D 0;D � 1 D 8;D � 3 D 8;D � 4 D 20. Find the 4 by 1 matrix
and solve ATAbx D ATb. Redraw Figure 4.9a showing the best line b D Dt and the
e’s.

8 Project b D .0; 8; 8; 20/ onto the line through a D .0; 1; 3; 4/. Find bx D D and
p D bxa. The best C in Problems 5–6 and the best D in Problems 7–8 do not agree
with the best .C;D/ in Problems 1–4. That is because .1; 1; 1; 1/ and .0; 1; 3; 4/ are

perpendicular.

9 For the closest parabola b D C CDt CEt 2 to the same four points, write down the
unsolvable equations Ax D b in three unknowns x D .C;D;E/. Set up the three
normal equations ATAbx D ATb (solution not required). In Figure 4.9a you are now
fitting a parabola to 4 points—what is happening in Figure 4.9b?

10 For the closest cubic b D C CDt CEt 2CF t3 to the same four points, write down
the four equations Ax D b. Solve them by elimination. In Figure 4.9a this cubic
now goes exactly through the points. What are p and e?

11 The average of the four times is bt D 1
4
.0 C 1 C 3 C 4/ D 2. The average of the

four b’s isbb D 1
4
.0C 8C 8C 20/ D 9.

(a) Verify that the best line goes through the center point .bt ;bb/ D .2; 9/.
(b) Explain why C CDbt Dbb comes from the first equation in ATAbx D ATb.

Figure 4.9: Problems 1–11: The closest line C CDt matches Ca1 CDa2 in R4.
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Questions 12–16 introduce basic ideas of statistics—the foundation for least squares.

12 (Recommended) This problem projects b D .b1; : : : ; bm/ onto the line through a D
.1; : : : ; 1/. We solve m equations ax D b in 1 unknown (by least squares).

(a) Solve aTabx D aTb to show that bx is the mean (the average) of the b’s.

(b) Find e D b� abx and the variance kek2 and the standard deviation kek.

(c) The horizontal line bb D 3 is closest to b D .1; 2; 6/. Check that p D .3; 3; 3/

is perpendicular to e and find the 3 by 3 projection matrix P .

13 First assumption behind least squares: Ax D b� (noise e with mean zero). Multiply
the error vectors e D b�Ax by .ATA/�1AT to get bx�x on the right. The estimation
errors bx � x also average to zero. The estimate bx is unbiased.

14 Second assumption behind least squares: The m errors e i are independent with vari-
ance �2, so the average of .b � Ax/.b � Ax/T is �2I . Multiply on the left by
.ATA/�1AT and on the right by A.ATA/�1 to show that the average matrix
.bx � x/.bx � x/T is �2.ATA/�1. This is the covariance matrix P in section 8.6.

15 A doctor takes 4 readings of your heart rate. The best solution to x D b1; : : : ; x D b4

is the average bx of b1; : : : ; b4. The matrix A is a column of 1’s. Problem 14 gives
the expected error .bx � x/2 as �2.ATA/�1 D . By averaging, the variance
drops from �2 to �2=4.

16 If you know the average bx9 of 9 numbers b1; : : : ; b9, how can you quickly find the
average bx10 with one more number b10 ? The idea of recursive least squares is to
avoid adding 10 numbers. What number multiplies bx9 in computing bx10?

bx10 D
1

10
b10 C bx9 D

1
10
.b1 C � � � C b10/ as in Worked Example 4:2 C.

Questions 17–24 give more practice with bx and p and e.

17 Write down three equations for the line b D C CDt to go through b D 7 at t D �1,
b D 7 at t D 1, and b D 21 at t D 2. Find the least squares solution bx D .C;D/

and draw the closest line.

18 Find the projectionp D Abx in Problem 17. This gives the three heights of the closest
line. Show that the error vector is e D .2;�6; 4/. Why is P e D 0?

19 Suppose the measurements at t D �1; 1; 2 are the errors 2;�6; 4 in Problem 18.
Compute bx and the closest line to these new measurements. Explain the answer:
b D .2;�6; 4/ is perpendicular to so the projection is p D 0.

20 Suppose the measurements at t D �1; 1; 2 are b D .5; 13; 17/. Compute bx and the
closest line and e. The error is e D 0 because this b is .

21 Which of the four subspaces contains the error vector e? Which contains p? Which
contains bx? What is the nullspace of A?
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22 Find the best line C CDt to fit b D 4; 2;�1; 0; 0 at times t D �2;�1; 0; 1; 2.

23 Is the error vector e orthogonal to b or p or e or bx? Show that kek2 equals eTb

which equals bTb� pTb. This is the smallest total error E.

24 The partial derivatives of kAxk2 with respect to x1; : : : ; xn fill the vector 2ATAx.
The derivatives of 2bTAx fill the vector 2ATb. So the derivatives of kAx � bk2 are
zero when .

Challenge Problems

25 What condition on .t1; b1/; .t2; b2/; .t3; b3/ puts those three points onto a straight
line? A column space answer is: (b1; b2; b3) must be a combination of .1; 1; 1/ and
.t1; t2; t3/. Try to reach a specific equation connecting the t ’s and b’s. I should have
thought of this question sooner!

26 Find the plane that gives the best fit to the 4 values b D .0; 1; 3; 4/ at the corners
.1; 0/ and .0; 1/ and .�1; 0/ and .0;�1/ of a square. The equationsCCDxCEy D
b at those 4 points are Ax D b with 3 unknowns x D .C;D;E/. What is A?
At the center .0; 0/ of the square, show that C CDx C Ey D average of the b’s.

27 (Distance between lines) The points P D .x; x; x/ and Q D .y; 3y;�1/ are on two
lines in space that don’t meet. Choose x and y to minimize the squared distance
kP �Qk2. The line connecting the closest P and Q is perpendicular to .

28 Suppose the columns of A are not independent. How could you find a matrix B so
that P D B.BTB/�1BT does give the projection onto the column space of A? (The
usual formula will fail when ATA is not ivertible.)

29 Usually there will be exactly one hyperplane in Rn that contains the n given points
x D 0;a1; : : : ;an�1: (Example for n D 3: There will be one plane containing
0;a1;a2 unless .) What is the test to have exactly one plane in Rn?




