.. _similar: Similarity Transformations -------------------------- Similarity transformations are particularly important to the eigenvalue problem because they preserve the eigenvalues as the matrix is changed to the desired shape. .. _th-similar: .. rubric:: Similar Matrices Theorem .. prf:theorem:: Similar Matrices :label: similarMatrices Matrices :math:`\bf{A}` and :math:`\bf{B}` are *similar* if there exists a matrix :math:`\bf{M}` for which the relationship :math:`\mathbf{B} = \mathbf{M}^{-1}\,\mathbf{A\,M}` holds. Since matrices :math:`\bf{A}` and :math:`\bf{B}` are similar, they have the same eigenvalues. .. prf:proof:: For :math:`\bm{x} \neq \bm{0}`, :math:`\m{A}\, \bm{x} = \lambda\, \bm{x}`, and non-singular matrix :math:`\m{M}`, there exists matrix :math:`\m{B} = \m{M}^{-1}\,\m{A\,M}` such that :math:`\m{B}\,(\m{M}^{-1}\,\bm{x}) = \lambda\,(\m{M}^{-1}\,\bm{x})`. .. math:: \mathbf{A}\,(\mathbf{M\,M}^{-1})\,\bm{x} = \lambda\,\bm{x} Now pre-multiply both sides by :math:`\mathbf{M}^{-1}` and substitute for :math:`\bf{B}`. .. math:: \begin{aligned} &(\mathbf{M}^{-1}\mathbf{A\,M})\,\mathbf{M}^{-1}\,\bm{x} = \lambda\,\mathbf{M}^{-1}\,\bm{x} \\ &\mathbf{B}\,(\mathbf{M}^{-1}\,\bm{x}) = \lambda\,(\mathbf{M}^{-1}\,\bm{x}) \end{aligned} Thus, an eigenvalue of :math:`\bf{B}` is :math:`\lambda`, and the corresponding eigenvector of :math:`\bf{B}` is :math:`\mathbf{M}^{-1}\,\bm{x}`. :math:`\qed` Algorithms that compute the eigenvalues of a matrix must maintain similarity. By the triangularization theorem (:ref:`SchurProof`), a sequence of similarity transforms with unitary matrices, :math:`\m{Q}_i`, may be used to transform :math:`\m{A}` into a triangular matrix :math:`\m{T} = \m{Q\, A\, Q}^H` where :math:`\m{Q}` is the product of the unitary matrices, :math:`\m{Q} = \m{Q}_0 \times \m{Q}_1 \times \cdots \times \m{Q}_k`. The eigenvalues of :math:`\m{A}` are on the diagonal of :math:`\m{T}`, and :math:`\m{Q}`, the matrix of Schur vectors, may be used to find the eigenvectors of :math:`\m{A}`. .. index:: similar matrices theorem