.. _syseqHW: Systems of Equations Homework ============================== #. For the following system of equations, express the equations as a matrix equation of the form :math:`\mathbf{A\,}\bm{x} = \bm{b}`. .. math:: \left\{\begin{aligned} 7x_1 + 9x_2 + 4x_3 = 102 \\ 17x_1 + 8x_2 + 6x_3 = 171 \\ -7x_1 + -7x_2 + 10x_3 = -64 \end{aligned}\right. #. Use the `solve` function from Python's `scipy.linalg` module to find the solution to the previous system of equations. #. Apply elimination to the 2-by-3 augmented matrix :math:`[\mathbf{A}\:\bm{b}]`. What is the triangular system :math:`\mathbf{U}\,\bm{x} = \bm{c}`? What is the solution :math:`\bm{x}`? .. math:: \mathbf{A}\,\bm{x} = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} #. For each system of equations, use Python’s ``numpy.linalg.matrix_rank`` function to determine if a solution exists. Note the rank of :math:`\bf{A}`. If a solution exists, use Python’s `scipy.linalg.solve` function to find it. a. .. math:: \left\{\begin{aligned} x_1 + 2x_2 + 2x_3 = 1 \\ 4x_1 + 8x_2 + 9x_3 = 3 \\ 3x_2 + 2x_3 = 1 \end{aligned}\right. b. .. math:: \left\{\begin{aligned} x_1 + 2x_2 + 3x_3 = 1 \\ 3x_2 + x_3 = 2 \\ x_1 + 14x_2 + 7x_3 = 3 \end{aligned}\right. c. .. math:: \left\{\begin{aligned} 7x_1 + 7x_2 = 35 \\ 14x_1 + 7x_2 = 49 \end{aligned}\right.